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Abstract

We provide a dynamic asset-pricing model of cryptocurrencies/tokens on platforms

and highlight their roles on endogenous user adoption. Tokens facilitate transactions

among decentralized users and allows them to capitalize future growth of promising

platforms. Tokens thus can accelerate adoption, reduce user-base volatility, and im-

prove welfare. Token price increases non-linearly in platform productivity, users’ het-

erogeneous transaction needs, and endogenous network size. The growth of user base

starts slow, becomes explosive and volatile, and eventually tapers off. Our model can

be extended to discuss platform token supply, cryptocurrency competition, and pricing

assets under network externality.
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1 Introduction

Blockchain-based cryptocurrencies and tokens have taken a central stage in the FinTech

world over the past few years. According to CoinMarketCap.com, the entire cryptocurrency

market capitalization has grown to hundreds of billions of US dollars globally, with active

trading and uses; virtually unknown a year ago, initial coin offerings (ICOs) have attracted

significant attention, having raised a total US$3.5 billion and completed more than 200

deals in 2017 alone, according to CoinSchedule. In order to draw a line between reckless

speculation and financial innovation, and understand how tokens should be regulated, it is

important to first understand how cryptocurrencies or tokens (henceforth generically referred

to as “tokens”) derive value and the roles they play in the development of a network economy.

To this end, we develop a dynamic model of a digital economy with endogenous user

adoption and native tokens that facilitate transactions and business operations. We anchor

token valuation on the fundamental productivity of the (blockchain-based) network which

we refer to as the “platform”, and demonstrate how tokens derive value as an exchangeable

asset with limited supply that users hold to obtain transaction surplus available solely on the

platform. We then derive a token pricing formula that incorporates the user-base network

effect. Importantly, we highlight two roles of tokens in business development. First, the

expected price appreciation makes tokens attractive to early users, allowing them to capital-

ize future prospect of the platform and thereby accelerating adoption. Second, because the

expected price appreciation diminishes as the platform technology matures and more users

adopt, the endogenous token price change moderates the volatility of user base caused by

exogenous platform-productivity shocks.

Specifically, we consider a continuous-time economy with a continuum of agents who differ

in their transaction needs on the platform. We broadly interpret transaction as including

not only typical money transfers (e.g., on the Bitcoin blockchain) but also smart contracting

(e.g., on the Ethereum blockchain). Accordingly, we model agents’ gain from blockchain

transaction as a flow utility from token holdings that depends on agent-specific transaction

needs, the size of the user base, and the current productivity of the platform. The exogenous

“productivity” here can be broadly interpreted to reflect general usefulness of the platform,

technological advances, or regulatory changes such as banning cryptocurrency trading, etc.

Importantly, the flow utility from token holdings increases with the size of user base.
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In our model, agents make a two-step decision on (1) whether to incur a participation

cost to join the platform, and if so, (2) how many tokens to hold, which depends on both

blockchain trade surplus (“transaction motive”) and the expected future token price (“in-

vestment motive”). A key insight of our model is that users’ adoption decision not only

exhibits strategic complementarity through the flow utility of token holdings (the transac-

tion motive), but also an inter-temporal complementarity via the investment motive.

We illustrate this mechanism by considering a promising platform with a positive pro-

ductivity drift. The prospective growth in productivity leads agents to expect more users

to join the community in future, which induces a stronger future demand for tokens and

thus a current expectation of token price appreciation. The investment motive then creates

a stronger demand for tokens today and greater adoption.

We characterize the Markov equilibrium with platform productivity being the state vari-

able and derive a token pricing formula as the solution to an ordinary differential equation

with boundary conditions that rule out bubbles, in line with our goal of valuing tokens based

on platform fundamentals. This formula incorporates agents’ expectations of future token

price change, platform productivity, user base, and user heterogeneity. Building on the an-

alytical characterizations, we also relate our model to the existing data of cryptocurrencies

and tokens, in order to discipline model parameters and provide numerical illustrations.

Our model features rich interactions between financial markets and the real economy: the

financial side operates through the endogenous determination of token prices, whereas the

real side manifests itself in the user adoption and surplus flows from platform translations.

Tokens affect user adoption through the expected price appreciation, while user base affects

token prices through influencing the users’ flow utilities and token demands. This two-way

feedback naturally prompts a question: how does a platform with embedded tokens differ

from one without?

To answer this question, we compare the endogenous S-curve that describes the platform

adoption in our tokenized economy with those in two benchmark economies: the first-best

economy (i.e., the planner’s solution) and the tokenless economy where agents use dollars

as the media of exchange. Without tokens, under-adoption of promising platforms arises

because a user does not internalize the positive externality from her adoption on others.

Tokens, on the other hand, can improve welfare by inducing more adoption through agents’
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investment motives. In contrast, when the platform productivity on average decays over

time, tokens can precipitate its demise: agents forecast a smaller user base in the future

and anticipating token price depreciation, shun away from adopting and holding tokens.

In sum, embedding tokens on a platform front-loads the prospect of the platform and can

either accelerate the adoption of a productive platform or precipitate the abandonment of

an unproductive platform.

Introducing tokens can also reduce user base volatility, making it less sensitive to produc-

tivity shocks. The key driver is again the agents’ investment motive. A negative productivity

shock directly reduces the user’s flow utility and thus lowers user adoption. However, this

negative effect is mitigated by an indirect effect through the expected token price apprecia-

tion. The intuition is as follows. A lower adoption implies that more users can be brought

onto the platform in the future and therefore agents expect a stronger token price apprecia-

tion. As a result, token adoption increases. Similarly, a positive productivity shock directly

increases adoption by increasing the flow utility. But as the pool of potential newcomers

shrinks, the expected token price appreciation declines, discouraging agents from adoption.

Overall, productivity shocks, when translated to user-base fluctuations, are dampened by

the endogenous dynamics of token price.

Furthermore, our model helps to explain the large cross-sectional variation in token price

in the early stage of adoption, which is in line with empirical observations. Our model also

shows how the volatility of platform productivity propagates into token price volatility and

how endogenous adoption amplifies this propagation.

Overall, our model sheds light on the pricing of platform assets and on the roles of

tokens in peer-to-peer networks that include but is not necessarily restricted to blockchains.

The blockchain technology makes it possible to introduce digital currencies and tokens on

various platforms to facilitate peer-to-peer transactions, but our model also applies to trusted

platforms and traditional systems, such as email protocols and online social networks.1 In

sum, we offer a dynamic model and new perspectives for asset pricing on platforms with

1In fact, many platforms have treaded this path: Linden dollar for the game Second Life, WoW Gold
for the game World of Warcraft, Facebook Credits, Q-coins for Tencent’s QQ, Amazon Coins, to name a
few. Even before the heated debate on cryptocurrencies, economists and commentators were already raising
questions such as, “Could a gigantic non-sovereign like Facebook someday launch a real currency to compete
with the dollar, euro, yen and the like?” (Yglesias (2012)). Gans and Halaburda (2015) provide an insightful
introduction on how payment systems and platforms are related.
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endogenous network externality.

Related Literature. Nakamoto (2008) proposes a blockchain-based cryptocurrency for

peer-to-peer transactions. Harvey (2016) surveys the emerging literature of cryptofinance.

Among early studies, Biais, Bisière, Bouvard, and Casamatta (2017) and Saleh (2017) ana-

lyze the mining or minting games through Proof-of-Work and Proof-of-Stake; Easley, O’Hara,

and Basu (2017), Huberman, Leshno, and Moallemi (2017), and Cong, He, and Li (2018)

study miners’ compensation, organization, and market structure; Yermack (2017) and Cao,

Cong, and Yang (2018) evaluate the impact of the technology on corporate governance and

financial reporting; Cong and He (2018) examine informational issues in generating decen-

tralized consensus with implications on industrial organization.

Among contemporary theories featuring token valuation in static settings, Sockin and

Xiong (2018) studies tokens as indivisible membership certificates for agents to match and

trade with each other; Li and Mann (2018) studies the coordination effects of staged coin

offerings; Pagnotta and Buraschi (2018) studies Bitcoin pricing on exogenous user networks.

In a dynamic setting, Biais, Bisière, Bouvard, Casamatta, and Menkveld (2018) also

emphasize the fundamental value of Bitcoin from transactional benefits, and study the inter-

action among investors, miners and hackers. We differ by studying the joint determination

of user adoption and token valuation in a framework that highlights user heterogeneity, net-

work externalities, and most importantly, inter-temporal feedback effects. Moreover, our

model is applicable to platforms owned by trusted third parties, as well as (permissionless

and permissioned) blockchain platforms.2

Our paper is also broadly related to the following papers. Athey, Parashkevov, Sarukkai,

and Xia (2016) emphasizes the role of learning in agents’ decisions to use Bitcoin. Catalini

and Gans (2018) studies developers’ pricing of tokens to fund projects. Gandal and Hal-

aburda (2014) and Fernández-Villaverde and Sanches (2016) consider the competition among

cryptocurrencies.

We do not analyze the implications of blockchain technology on general-purpose curren-

cies and monetary policies (e.g., Balvers and McDonald (2017) and Raskin and Yermack

2For studies on the design of tokens on platforms, such as Gans and Halaburda (2015), Halaburda and
Sarvary (2016), Chiu and Wong (2015), and Chiu and Koeppl (2017). Our model is complementary to this
line of research by allowing flexible extensions to accommodate various design features.
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(2016)). Instead, we focus on the endogenous interaction between token pricing and user

adoption on platforms that serve sepcific transaction purposes. Our study should there-

fore be distinguished from the monetary literature. Also, our model differs from typical

asset-pricing models as ours incorporates the effects of endogenous user base and network

externalities into the asset value.

We organize the remainder of the article as follows. Section 2 sets up the model. Section

3 solves the dynamic equilibrium and derives the token valuation formula. Section 4 presents

the solutions for the tokenless and first-best economies. Section 5 highlights the impact of

tokens on user adoption. Section 6 analyzes token price dynamics. Section 7 provides ad-

ditional institutional background and Section 8 concludes. The appendix contains all the

proofs, parameter choices, and extensions.

2 A Model of Tokenized Economy

Consider a continuous-time economy where a unit measure of agents conduct peer-to-peer

transactions and realize trade surpluses on a platform, e.g., a blockchain. A generic good

serves as the numeraire (“dollar”). We first set up and solve the model under the risk-neutral

measure. In the appendix, we calibrate the model under the physical measure.3

2.1 Blockchain Technology and Agent Heterogeneity

Platform transaction surplus. The blockchain platform allows agents to conduct peer-

to-peer transactions. These transactions are settled via a medium of exchange, which can

either be the numeraire (e.g., dollar) or the native token for this blockchain. We use xi,t to

denote the value of agent i’s holdings in the unit of the numeraire. These holdings facilitate

transactions on the platform and generate a flow of utility over dt given by

x1−α
i,t (NtAte

ui)α dt, (1)

3The typical no-arbitrage condition implies a probability measure—the risk-neutral measure—under
which agents discount future cash flows using the risk-free rate.
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where Nt is the platform user base, At measures blockchain productivity, ui captures agent

i’s specific needs for blockchain transactions, and α ∈ (0, 1) is a constant.4

The platform productivity, At, evolves according to a geometric Brownian motion:

dAt
At

= µAdt+ σAdZA
t . (2)

We focus on the case of a promising yet risky platform, i.e., µA > 0 and σA > 0. We interpret

At broadly. A positive shock to At reflects technological advances in cryptography and

computation, favorable regulatory or policy changes, growing users’ interests, and increasing

variety of activities feasible on the platform.

The transaction surplus depends on Nt, the total measure of agents on the platform

(i.e., xi,t > 0). This specification captures the network externality among users, such as the

greater ease of finding trading or contracting counterparties in a larger community.

User heterogeneity and adoption. We assume that agents’ transaction needs, ui, are

heterogeneous. Let G (u) and g (u) denote the cross-sectional cumulative distribution func-

tion and the density function of ui that is assumed to be continuously differentiable over a

finite support [U,U ].

ui can be broadly interpreted. For payment blockchains (e.g., Ripple and Bitcoin), a high

value of ui reflects agent i’s urge to conduct a transaction (e.g., an international remittance

and a purchase of drugs). For smart-contracting blockchains (e.g., Ethereum), ui captures

agent i’s project productivity. For decentralized computation (e.g., Dfinity) and data stor-

age (e.g., Filecoin) applications, ui corresponds to the need for secure and fast access to

computing power and data.

To join the platform and realize the transaction surplus, an agent incurs a flow cost φdt.

For example, transacting on the platform takes effort and attention. At any time t, agents

may choose not to participate and then collect no transaction surplus. Therefore, agents

with sufficiently high ui choose to join the platform, while agents with sufficiently low ui do

not participate.

4Our results are qualitatively robust to alternative specifications that feature decreasing total return i.e.,
(xi,t)

1−α−γ
(NtAte

ui)
α

with γ > 0.
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2.2 Tokens, Agents’ Problem, and Equilibrium

Tokens and endogenous price. In what follows, we focus on the joint dynamics of token

valuation and user adoption on platforms requiring native tokens as the medium of exchange,

i.e.,

xi,t = Ptki,t, (3)

where Pt is the unit price of token in terms of the numeraire and ki,t is the units of token.5

We conjecture and verify that the equilibrium price dynamics is a diffusion process,

dPt = Ptµ
P
t dt+ Ptσ

P
t dZ

A
t , (4)

where µPt and σPt are endogenously determined.

Throughout the paper, we use upper-case letters for aggregate and price variables that

individuals take as given, and lower-case letters for individual-level variables.

Agent’s problem. Let yi,t denote agent i’s cumulative profit from blockchain activities.

Agent i then maximizes life-time utility under the risk-neutral measure,

E
[∫ ∞

0

e−rtdyi,t

]
, (5)

where we can write the incremental profit dyi,t as follows:

dyi,t = max

{
0, max

ki,t>0

[
(Ptki,t)

1−α (NtAte
ui)α dt+ ki,tEt [dPt]− φdt− Ptki,trdt

]}
. (6)

Here, the outer “max” operator reflects agent i’s option to leave the platform and obtain

zero profit, and the inner “max” operator reflects agent i’s optimal choice of ki,t.

Inside the inner max operator are four terms that add up to give the incremental prof-

its from participating in the blockchain transaction. The first term corresponds to the

blockchain trade surplus given in (1). The second term is the expected capital gains from

5The dollar value of inputs (Ptki,t), instead of ki,t alone, shows up in the surplus flow to facilitate the
comparison between platforms with and without tokens. It is also motivated by the fact that the economic
value of blockchain trades depends on the numeraire value of real goods and services that are transacted in
tokens. Our results are qualitatively similar in the alternative specification with only ki,t (instead of Ptki,t)
in the trade surplus.
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holding ki,t units of tokens, where Et [dPt] = Ptµ
P
t dt. Users care about the sum of the on-

chain transaction surplus and the expected token appreciation given by the first two terms

in (6). The third term is the participation cost and the last term is the financing cost of

holding ki,t units of tokens.

It is worth emphasizing that in our tokenized economy, agents must hold tokens for at

least an instant dt to complete transactions and derive utility flows. This holding period

exposes users to token price change over dt, but is important for blockchain transactions for

several reasons. One example is smart contracting, which often requires tokens as collateral

and therefore exposes the collateral owners to token price fluctuations. We provide more

examples and institutional details that motivate our setting in Section 7.

The Markov equilibrium. We study a Markov equilibrium with At, the only source of

exogenous shocks in the economy, as the state variable. For simplicity, we fix the token

supply to a constant M .6 The market clearing condition is

M =

∫
i∈[0,1]

ki,tdi, (7)

where for those who do not participate, ki,t = 0.

Definition 1. A Markov equilibrium with state variable At is described by agents’ decisions

and equilibrium token price such that the token market clearing condition given by Equation

(7) holds and agents optimally decide to participate (or not) and choose token holdings.

3 Dynamic Equilibrium of Adoption and Valuation

We now solve for the Markov equilibrium, where the user base, Nt, users’ token holdings,

ki,t, and token price Pt, are functions of the state variable At. First, we analyze agents’

decision to participate and hold tokens, given At and agents’ expectation of token price

change µPt . Then we complete the solution by solving the token price dynamics (and in

particular, µPt as a function of At). Each step ends with a summarizing proposition.

6This is the case with many ICOs that fix the supply of tokens. More generally, the blockchain technology
allows supply schedules to be based on explicit rules independent of any endogenous variables, and can be
accommodated in the model by adding in the inflation or deflation of token prices corresponding to the rules.

8



Token demand and user base. Conditioning on joining the platform, agent i chooses

the optimal token holdings, k∗i,t, by using the first order condition,

(1− α)

(
NtAte

ui

Ptk∗i,t

)α
+ µPt = r, (8)

which states that the sum of marginal transaction surplus on the platform and the expected

token price change is equal to the required rate of return, r. Rearranging this equation, we

obtain the following expression for the optimal token holdings:

k∗i,t =
NtAte

ui

Pt

(
1− α
r − µPt

) 1
α

. (9)

k∗i,t has several properties. First, agents hold more tokens when the common productivity,

At, or agent-specific transaction need, ui, is high, and also when the user base, Nt, is larger

because it is easier to conduct trades on the platform. Equation (9) reflects an investment

motive to hold tokens, that is k∗i,t increases in the expected token appreciation, µPt .

Using k∗i,t, we obtain the following expression for the agent’s profit conditional on partic-

ipating on the platform:

NtAte
uiα

(
1− α
r − µPt

) 1−α
α

− φ. (10)

Agent i will only particpate when the preceding expression is non-negative. That is, only

those agents with sufficiently large ui will particpate. Let ut denote the type of user who is

indifferent between participating on the platform or not.

By setting the expression (10) to zero, we obtain the following equation for the user-type

cutoff threshold:

ut = u
(
Nt;At, µ

P
t

)
= − ln (Nt) + ln

(
φ

Atα

)
−
(

1− α
α

)
ln

(
1− α
r − µPt

)
. (11)

Because only agents with ui ≥ ut will particpate, the user base is then given by

Nt = 1−G (ut) . (12)

9



Figure 1: Determining User Base. This graph shows the aggregate response of users’
adoption decision, R

(
n;At, µ

P
t

)
, to different levels of Nt = n ∈ [0, 1], given At and µPt .

The adoption threshold ut is decreasing in At because a more productive platform attracts

more users. The threshold also decreases when agents expect a higher token price apprecia-

tion (i.e., higher µPt ).

Equations (11) and (12) jointly determine the user base Nt given At and µPt . First, we

note that zero adoption is always a solution. Next, we focus on the non-degenerate case,

i.e., Nt > 0. Fixing At and µPt , we consider a response function R
(
n;At, µ

P
t

)
that maps a

hypothetical value of Nt, say n, to the measure of agents who choose to participate after

knowing Nt = n. As depicted in Figure 1, the response curve originates from zero (the

degenerate case). In the Appendix, we first show that given µPt , there exists a threshold

A
(
µPt
)

such that for At < A
(
µPt
)
, a non-degenerate solution does not exist, because the

response curve never crosses the 45o line. Then we prove that when At ≥ A
(
µPt
)
, the

response curve crosses the 45o line exactly once (and from above) under the assumption that

the hazard rate for g (u) is increasing.7

Proposition 1 (Token Demand and User Base). Given µPt and a sufficiently high

productivity, i.e., At > A
(
µPt
)
, we have a unique non-degenerate solution, Nt, for Equations

7The hazard rate, g(u)
1−G(u) , is increasing in u if and only if 1 − G(u) is log-concave. This assumption is

common in the theory literature to avoid the technically complicated “ironing” of virtual values.
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(11) and (12) under the increasing hazard-rate assumption. The user base, Nt, increases

in µPt and At. Agent i participates when ui ≥ ut, where ut is given by Equation (11).

Conditional on participating, Agent i’s optimal token holding, k∗i,t, is given by Equation (9).

The token holding, k∗i,t, decreases in Pt and increases in At, µ
P
t , ui, and Nt.

Token Pricing. First, we define the participants’ aggregate transaction need as

St :=

∫ U

ut

eug (u) du, (13)

the integral of eui of participating agents. Substituting optimal holdings in Equation (9) into

the market clearing condition in Equation (7), we obtain the Token Pricing Formula:

Pt =
NtStAt
M

(
1− α
r − µPt

) 1
α

. (14)

The token price increases in Nt – the larger the user base is, the higher trade surplus

individual participants can realize by holding tokens, and stronger the token demand. The

price-to-user base ratio increases in the platform productivity, the expected price apprecia-

tion, and the network participants’ aggregate transaction need, while it decreases in the token

supply M . The formula reflects certain observations by practitioners, such as incorporating

DAA (daily active addresses) and NVT Ratio (market cap to daily transaction volume) in

token valuation framework, but instead of heuristically aggregating such inputs into a pricing

formula, we solve both token pricing and user adoption as an equilibrium outcome.8

The token pricing formula given in Equation (14) also implies the following differential

equation that characterizes P (At) as a function of state variable At.
9

µAAt

(
dPt
dAt

)
+

1

2

(
σA
)2
A2
t

d2Pt
dA2

t

+ (1− α)

(
NtStAt
MPt

)α
Pt − rPt = 0. (15)

8See, for example, Today’s Crypto Asset Valuation Frameworks by Ashley Lannquist at Blockchain at
Berkeley and Haas FinTech.

9Since ut decreases in µPt , the RHS of Equation (14) increases in µPt , so At and Pt uniquely pin down
µPt , which contains the first and second derivatives of Pt to At by Itô’s lemma. Therefore, the mapping from
At, P (At), and P ′ (At) to P ′′ (At) is unique. The implied ODE satisfies all the conditions in Theorems 4.17
and 4.18 in Jackson (1968), which guarantee the existence and uniqueness of the solution. The existence of
a unique (fundamental-driven) equilibrium distinguishes our paper from studies such as Sockin and Xiong
(2018) that focus on equilibrium multiplicity and allows us to highlight dynamics of adoption and valuation.
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We solve the preceding ODE for P (At) with the following boundary conditions. The first is

lim
At→0

P (At) = 0, (16)

which means that the token price is zero when the platform is permanently unproductive

(Note that At = 0 is an absorbing state.)

Next, we discuss remaining boundary conditions by using the solution under full adoption.

As Nt = 1, the aggregate transaction demand, St, is equal to S, where

S ≡
∫ U

U

eug (u) du, (17)

is the sum (integral) of all agents’ eui . Let P (At) denote token price under full adoption.

As we focus on the fundamentals, the token price dynamics is fully determined by the

underlying productivity growth, i.e., µPt = µA. Therefore, we obtain the following Gordon

Growth Formula for token price under full adoption:

P (At) =
SAt
M

(
1− α
r − µA

) 1
α

, (18)

where S is given by Equation (17). Let Ã denote the lowest value of At that induces full

adoption. The value-matching and smooth-pasting conditions hold at Ã:

P (Ã) = P (Ã) and P ′(Ã) = P
′
(Ã). (19)

Proposition 2 (Markov Equilibrium). With At being the state variable, the token price

P (At) uniquely solves the ODE given by Equation (14) subject to boundary conditions given

by Equations (16) and (19). Given the token price dynamics, agents’ optimal token holdings

and participation decisions together with the user base are reported in Proposition 1.

Figure 2 summarizes the key economic mechanism discussed thus far, where the blue

dotted, black solid, and red dashed arrows show respectively the user-base externality, the

transaction motive of token holdings, and the investment motive of token holdings.
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date t date t+ dt date t+ 2dt ...

dZt > 0

Productivity At ↑

Token flow utility ↑

User base Nt ↑

Productivity At+dt ↑

Token flow utility ↑

User base Nt+dt ↑

Token price Pt+dt ↑

µA > 0
→ µP

t > 0

Productivity At+2dt ↑

Token flow utility ↑

User base Nt+2dt ↑

Token price Pt+2dt ↑

µA > 0
→ µP

t+dt > 0

Figure 2: The Economic Mechanism. The black solid arrows point to the increases of the current and
future (expected) levels of productivity A, which lead to higher flow utilities of tokens, and in turn, larger
user bases N . The blue dotted arrows show that increases in user base result in even higher flow utility
due to the contemporaneous user-base externality. Finally, more users push up the token prices P in future
dates, which feed into a current expectation of price appreciation and greater adoption (red dashed arrows).

4 Benchmark Economies

This section analyzes two benchmark economies to help us understand the roles of tokens.

The first is the tokenless economy, which features a platform where the medium of exchange

is dollar, the numeraire. By comparing our tokenized economy with this benchmark, we

highlight how introducing native tokens affects user adoption. The second benchmark is the

central planner’s problem, which achieves the first-best outcome and helps us understand

the welfare consequences of introducing tokens.

4.1 Tokenless Economy

Unlike the tokenized economy, in our tokenless economy, dollar, the numeraire, is the

medium of exchange and agents only have transactional motives. The agent’s profit is given

by

dyi,t = max

{
0, max

xi,t>0

[
(xi,t)

1−α (NtAte
ui)α dt

blockchain trade surplus

− φdt
participation cost

− xi,trdt
financing cost

]}
. (20)
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Unlike Equation (6) for the tokenized economy, as there is no native token, the token price

fluctuation, µPt , no longer appears in the agent’s profits.

Conditional on joining the platform (i.e., xi,t > 0), the agent chooses xi,t as follows:

x∗i,t = NtAte
ui

(
1− α
r

) 1
α

. (21)

The maximized profit when joining the platform is then

NtAte
uiα

(
1− α
r

) 1−α
α

− φ. (22)

An agent joins the platform only when Expression (22) is positive. That is, agent i partici-

pates if and only if ui ≥ uNTt , where uNTt is the endogenous threshold given by

uNTt = − ln (Nt) + ln

(
φ

Atα

)
−
(

1− α
α

)
ln

(
1− α
r

)
. (23)

Here, the superscript “NT” refers to the “no-token” case. The user base is thus given by

NNT
t = 1−G

(
uNTt

)
. (24)

Equations (23) and (24) jointly determine uNTt and NNT
t as functions of At. Additionally,

the user base, NNT
t , increases in At.

We define ANT by following essentially the same reasoning as the one in Proposition 1

for the tokenized economy.10 We can show that there exists a non-degenerate solution, NNT
t ,

when the platform is sufficiently productive, i.e., At ≥ ANT .

Next, we consider the social planner’s problem by internalizing network externalities.

4.2 The First-best (FB) Economy

Given a user base Nt, the socially optimal holdings of dollars is still

x∗i,t = NtAte
ui

(
1− α
r

) 1
α

. (25)

10We can simply solve ANT by imposing µPt = 0 in Proposition 1.
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Let Ut denote the set of participating users and in equilibrium the mass is equal to Nt. The

total trade surplus (if positive) is given by

∫
i∈Ut

[
αNtAte

ui

(
1− α
r

) 1−α
α

− φ
]
di = Nt

[
α

(
1− α
r

) 1−α
α

At

∫
i∈Ut

euidi− φ
]
. (26)

To maximize this welfare flow, the planner optimally sets Nt = 1, i.e., Ut being the full

set of agents, unless given Nt = 1, the objective (26) is negative, in which case it is socially

optimal to have zero adoption and zero welfare. The switching from zero adoption to full

adoption happens at

AFB = φ

[
α

(
1− α
r

) 1−α
α

S

]−1

, (27)

where S is given by Equation (17). Given that S <∞, welfare maximization has a bang-bang

solution, requiring full adoption if A ≥ AFB and zero adoption otherwise.

We show that there are more agents participating on the platform in the FB economy

than in our tokenless economy, which means the productivity thresholds for adoption in the

two economies satisfies AFB < ANT (proof in the appendix). This result follows from that

the social planner internalizes the positive externality of an agent’s adoption on other users.

How does the decentralized equilibrium of tokenized economy differ from the planner’s

solution? On the one hand, tokens induce an investment motive in agents’ decision to par-

ticipate, alleviating the under-adoption problem in the decentralized tokenless equilibrium.

On the other hand, over-adoption may happen in the sense that Nt > 0 even when At < AFB.

In the appendix, we use data on token pricing and adoption to discipline our choices of

parameter values for numerical solutions. Next, we combine the analytical and numerical

findings to discuss the roles of tokens.

5 The Roles of Tokens

In this section, we analyze the adoption dynamics and highlight the roles of tokens by

comparing the tokenized economy, the tokenless economy, and the first-best economy.
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Figure 3: Dependence of User Base on Blockchain Productivity. This graph shows
Nt, the user base of tokenized economy (blue solid curve), data of normalized active user
addresses (gray scattered dots), and the user base of tokenless economy against ln (At),
the blockchain productivity. The dotted vertical line marks the level of productivity, beyond
which the planner chooses full adoption, and below which the planner chooses zero adoption.

5.1 User-Adoption Acceleration

We illustrate the adoption acceleration and user-base volatility reduction effects of tokens

with the numerical solutions. When tokens are introduced as the platform’s medium of

exchange, token prices reflect agents’ expectations of future technological progress and user

adoption. Tokens therefore accelerate adoption because agents joining the community enjoy

not only the trade surplus but also the investment return from token price appreciation.

The solid line in Figure 3 shows that the user base Nt is an S-shaped function of ln (At).
11

When the platform’s productivity At is low, the user base Nt barely responds to changes

in At. In contrast, when At is moderately high, Nt responds much more to changes in At.

The growth of user base feeds on itself – the more agents join the ecosystem, the higher

transaction surplus each derives. User adoption eventually slows down when the pool of

newcomers gets exhausted. We also plot the scattered data points. We provide details on

sample construction in Appendix B.

11The curve starts at ln (At) = −48.35 (At = 1e − 21), a number that we choose to be close to zero, the
left boundary. The curve ends at ln (At) = 18.42 (At = 1e8), the touching point between P (At) and P (At).
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Figure 3 also compares the user adoption in tokenized and tokenless (decentralized)

economies. The former strictly dominates the latter. Both economies reach full adoption

when At becomes sufficiently large. Notice that the adoption thresholds in Equations (11)

and (23) differ by the extra µPt term. When µPt > 0, Nt > NNT
t given At, where Nt is

determined by Equation (12). In other words, the expected token price appreciation induces

a higher level of adoption than the case without tokens.12

Token price appreciation critically depends on the growth of At. When µA > 0, agents

forecast a higher token price and the investment motive accelerates user adoption. Without

tokens, this investment-driven demand is shut down. Therefore, introducing tokens help

capitalize future productivity growth and grow promising platforms.13 In contrast, when

µA < 0, the expected token depreciation (µPt < 0) precipitates user exits and the demise of

the platform. Our numerical analysis focuses on the case where µA > 0.

For comparison, we also plot in Figure 3 the first-best solution via the dotted vertical line

at ln
(
AFB

)
, which is given by Equation (27). Recall that the planner chooses full adoption

if At ≥ AFB and zero adoption otherwise. Relative to the first-best economy, a tokenless

economy features under-adoption and introducing tokens helps mitigate this inefficiency.14

5.2 User-base Volatility Reduction

Next, we compare the user base volatility in tokenized and tokenless economies. Note

that in the first-best economy, because the adoption is either zero or full, user base volatility

is not an issue.

To derive the dynamics of Nt, we first conjecture the following equilibrium diffusion

process:

dNt = µNt dt+ σNt dZ
A
t . (28)

12Note that in the system without token, transactions are settled on dollars, and we simplify the analysis
by assuming that the price of dollar in goods is fixed at one. In reality, the value of dollar declines over time
due to inflation, which strengthens the adoption acceleration effect.

13We note that a predetermined token supply schedule is important. If token supply can arbitrarily
increase ex post, then the expected token price appreciation is delinked from the technological progress. Pre-
determinacy or commitment can only be credibly achieved through the decentralized consensus mechanism
empowered by the blockchain technology. In contrast, traditional monetary policy has commitment problem
– monetary authority cannot commit not to supply more money when its currency value is relatively high.

14Tokenized economy may also lead to over -adoption because it is possible that Nt > 0 even when
At < AFB . For most model parameter choices, over-adoption is not a severe problem because Nt is extremely
close to zero for At < AFB .
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In the appendix, we show that in the tokenless economy

σNt =

(
g
(
uNTt

)
1− g (uNTt ) /NNT

t

)
σA (29)

and in the tokenized economy

σNt =

(
g (ut)

1− g (ut) /Nt

)[
σA +

(
1− α
α

)(
σµ

P

t

r − µPt

)]
, (30)

where σµ
P

t is the diffusion of µPt as defined below:

dµPt = µµ
P

t dt+ σµ
P

t dZA
t . (31)

We know that Nt follows a reflected (or “regulated”) diffusion process bounded in [0, 1].

Comparing Equations (29) and (30), we see that introducing tokens alters the user-base

volatility through σµ
P

t , which is the volatility of expected token appreciation, µPt , as defined

in Equation (31). Embedding a native token may either amplify or dampen the shock effect

on the user base, depending on the sign of σµ
P

t . By Itô’s lemma, σµ
P

t =
dµPt
dAt

σAAt, so the sign

of σµ
P

t depends on whether µPt increases or decreases in At.

Intuitively, µPt decreases in At (and thus, σµ
P

t < 0), precisely because of the endogenous

user adoption. Consider a positive shock to At, which has a direct effect of increasing Nt due

to higher transaction surplus. For a large Nt, the potential for Nt to grow decreases, so does

the expected token appreciation, i.e., µPt . The token price dynamics therefore moderate Nt’s

increase. Similarly, consider a negative shock to At. The token price channel mitigates the

decrease in Nt. Overall, introducing token can reduce the user-base sensitivity to shocks.

Next, we illustrate in Figure 4 how tokens reduce user-base volatility. The left panel

plots σNt , and compares the cases with and without token across different stages of adoption.

Both curves start and end at zero, consistent with the S-shaped development in Figure 3 in

which both curves start flat and end flat. This volatility reduction effect is more prominent

in the early stage of development when At and Nt are low. Note that σNt can be slightly

higher when token is introduced because the first brackets in Equations (29) and (30) differ

due to the difference between uNTt and ut even for the same adoption level.
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Figure 4: User-Base Volatility Reduction Effect. The left panel of this graph shows
the volatility of user base, σNt , in the tokenized (blue solid curve) and tokenless (red dotted
curve) economies over adoption stages, Nt. The right panel shows the expected token price
change, µPt , across different levels of blockchain productivity, ln (At). The black dotted line
marks the expected growth rate of blockchain productivity.

The right panel of Figure 4 plots µPt against ln (At), showing their negative relation that

causes σµ
P

t < 0, which generates the volatility reduction effect. When At is low and Nt is

low, token price is expected to increase fast, reflecting both the future growth of At and Nt.

As At and Nt grow, the pool of agents who have not adopted (1−Nt) shrinks and there is

less potential for Nt to grow. As a result, the expected token appreciation declines.

Remark: Given the roles of the tokens in accelerating and stabilizing user adoption, en-

trepreneurs may want to introduce them in a platform. For example, suppose the platform

can collect a fee from the users, greater adoption would increase the revenue of the plat-

form. Tokens are often used to raise capital from early investors (e.g., in ICOs) for platform

development. Through retaining some tokens, early investors and entrepreneurs also ben-

efit from token price appreciation. Our on-going work explores such considerations of the

entrepreneurs and platform designers.15

15One promising extension is the comparison of the adoption acceleration benefit of tokens we highlight
with traditional user subsidy through VC capital. Bakos and Halaburda (2018) recently study this tradeoff
in a two-period model without technological uncertainty or user heterogeneity.
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Figure 5: Token Price Dynamics over Adoption Stages. This graph shows the log
token price across adoption stages, Nt (blue solid curve), and data as scattered dots.

6 Token Price Dynamics under Endogenous Adoption

In this section, we discuss how endogenous user adoption leads to nonlinear price dynam-

ics that are broadly consistent with empirical observations.

Token price over adoption stages. As some key inputs, e.g., ln (At), in our model are

unobservable, in Figure 5 we link two key observables, the logarithmic token price ln(Pt) and

the user base Nt—both are functions of At in equilibrium. Token price increases fast with

adoption in the early stage, changes more gradually in the intermediate stage, and speeds up

again once the user base reaches a sufficiently high level. The two price run-ups in the initial

and final stages of adoption correspond to the slow user base growth in these two stages.

This figure helps us understand the cross-sectional differences in token pricing. For

exposition, we sort blockchain platforms into three adoption stages: early, intermediate, and

late. For two blockchain platforms in the early stage, a small difference of Nt between them

can generate a very large differences in ln(Pt). Similar result holds in the late stage. In

contrast, in the intermediate stage, even a large difference of Nt between the two platforms

only yields a small difference of ln(Pt).
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Figure 6: Token Price Volatility Amplification. This graph shows the ratio of token
price volatility, σPt , to blockchain productivity volatility, σA, which quantifies the strength
of volatility amplification by the endogenous user adoption.

Price volatility dynamics. First notice that at full adoption Nt = 1, Equation (18)

reveals that the ratio of Pt to At is a constant, and σPt = σA. To the extent that the

underlying productivity volatiliity σA is large (as suggested by our empirical analysis detailed

in the appendix), token price volatility can be large even under full adoption.

In fact, σPt is generally larger than σA as seen in Figure 6. The intuition is that a positive

shock to At not only directly increases the demand for tokens but also increases adoption,

which amplifies the shock’s impact on token price because Nt appears in the surplus flow.

Finally, Figure 6 also shows that token price volatility crucially depends on the adop-

tion stage: it shoots up in the very early stage of adoption, gradually declines, and finally

converges to σA as Nt approaches one.

7 Institutional Background

In this section, we clarify various concepts associated with cryptocurrencies. Impor-

tantly, we highlight two salient features shared among the majority of cryptocurrencies that

our model captures: first, they are used as media of exchange on the platform (“token em-

bedding”); second, their use exhibits network effects (“user-base externality”).
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Blockchains, cryptocurrencies, and tokens. Blockchains are decentralized ledgers that

record transactions and contracts that create a financial architecture for peer-to-peer inter-

actions without relying on a centralized trusted third party. The blockchain technology

potentially avoids a single point of failure and also reduces the concentration of market

power, but still faces many challenging issues.16

Many blockchain applications feature cryptocurrencies and tokens. Bitcoin is the first

widely-adopted decentralized cryptocurrency and over 1000 different “altcoins” (alternatives

to Bitcoin) have been introduced over the past few years.17 Many altcoins such as Litecoin

and Dogecoin are variants of Bitcoin, with modifications made to the original open-sourced

protocol to enable new features. Others such as Ethereum and Ripple created their own

blockchains and protocols to support their native currencies. In all these applications, cryp-

tocurrencies serve as the media of exchange on their blockchain platforms.

Recently, initial coin offerings (ICOs) have also gained popularity. In ICOs, entrepreneurs

sell “tokens” or “AppCoins” to investors. However, how tokens derive value is not clear, and

thus, ICOs are facing quagmires regarding their legitimacies and distinctions from security

issuances.18 In practice, tokens could represent (1) the claims on issuers’ cash-flows (“security

tokens”), (2) the rights to redeem issuers’ products and services, or (3) the media of exchange

among blockchain users.19 These tokens are often developed for blockchain applications (e.g.,

Gnosis and Golem) built on existing infrastructures (e.g., Ethereum or Waves). We focus

on the majority of tokens issued thus far such as Filecoin, 0x, Civic, Raiden, and Basic

Attention Token (BAT), which are the required media of exchange among platform users.

16Although Bank of England governor Mark Carney dismissed Bitcoin as an alternative currency, he
recognized that the blockchain technology benefits data management by improving resilience by “eliminating
central points of failure” and enhancing transparency and auditability while expanding what he called the
use of “straight-through processes” including with smart contracts. In particular, “Crypto-assets help point
the way to the future of money”. See, e.g., beat.10ztalk.com.

17Central banks, such as Bank of Canada, Monetary Authority of Singapore, and People’s Bank of China,
are exploring the possibilities of digital currencies. In a controversial move, Venezuela announced in Feb
2018 the first digital currency, “petro”—an oil-backed token as legal tender for taxes and other public uses.
Deutsche Bundesbank is working on the prototype of blockchain-based settlement systems for financial assets.

18See, for example, “Token Resistance,” The Economist, November 11th, 2017. In the recent hearing on
Capital Markets, Securities, and Investment, March 14, 2018, the regulators also appear rather divided on
the future of cryptocurrencies, digital currencies, ICOs, and Blockchain development.

19While the first ICO in 2013 raised a meager $500k and sporadic activities over the next two years,
2016 saw 46 ICOs raising about $ 100m and according to CoinSchedule, in 2017 there were 235 Initial Coin
Offerings. The year-end totals came in over $3 billion raised in ICO. In August, 2017, OmiseGO (OMG) and
Qtum passed a US$1 billion market cap today, according to coinmarketcap.com, to become the first ERC20
tokens built on the Ethereum network and sold via an ICO to reach the unicorn status.
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Token embedding. Blockchain platforms often use native tokens to settle transactions

among their users—a phenomenon that we refer to as “token embedding.” There are several

reasons for this common practice.

First, transacting via a common token is convenient and saves costs of exchanging curren-

cies. For example, the Ripple token (XRP) settles international payments on its blockchain

at lower costs than the banking system. Most transactions and fundraising activities are

carried out using Ethers (ETH) because of its convenience and popularity, despite the fact

that the Ethereum platform allows other ERC-20 compatible cryptocurrencies

Second, for blockchain applications such as smart contracting, using a common unit

of account eliminates the balance-sheet risk that would arise if assets and liabilities were

denominated in different units of account (Doepke and Schneider (2017)).

Third, tokens provide incentives for entrepreneurs, programmers, and miners (or other

ledger validators) who contribute to the platform.20 For “proof-of-work” blockchains, such

as Bitcoins, tokens are used to reward “miners” who maintain ledgers; owning tokens may

allow users to maintain ledgers or provide services on other blockchains, such as Truebit

(off-chain computation), OmiseGO (open payment), Livepeer (distributed video encoding),

and Gems (decentralized mechanical Turk).

Fourth, introducing tokens allows the issuers to collect economic rent. In contrast to

sovereigns who cannot easily commit to a money supply rule, blockchain developers can

commit to an algorithmic rule of token supply to generate scarcity. Developers then collect

rent through coin offerings—the fact that users can only conduct activities via the tokens of a

blockchain platform generates the value of tokens, and thus, ICO revenues to the developers.

These rationales motivate us to focus on platforms with native tokens. But if the velocity

of native tokens is infinite, their price is indeterminate. A key aspect of token embedding is

that agents have to hold tokens for a certain period of time to conduct blockchain activities.

First, reaching decentralized consensus takes time—the concept of finality time (Chiu and

Koeppl (2017)). Second, decentralized ledger maintainers often need to hold tokens as proof

of the right to provide services.21 Third, smart contracts that automate contingent transfers

20For example, as explained by Strategic Coin, BAT tokens serve as the medium of exchange among
consumers, advertisers, and publishers who adopt the Brave web browser. The advertisers purchase ads
using BAT tokens, which are then distributed to the publishers for hosting the ads and to the browser users
(consumers) for viewing the ads.

21Proof-of-Stake protocols typically fall in this category.
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often require escrowing the tokens. Finally, there are legal limits, e.g., the know-your-

customer process in anti-money-laundering practice (e.g., Dfinity).

User-base externality. User-base externality has been well recognized as a defining fea-

tures of P2P platforms and sharing economies. The utility of tokens increases, when more

people use the blockchain platform, and thus, it is easier to meet transaction counterpar-

ties. Therefore, tokens represent assets that deliver convenience dividends (in terms of user

transaction surplus) which increase in the size of platform user base.

This network effect is not restricted to blockchain platforms. It is particularly important

on social and payment networks such as Facebook, Twitter, YouTube, WeChat, and Pay-

Pal. Other examples include club membership and collectibles of limited edition in sports.

Therefore, the insights from our model broadly apply to platform currencies that can be

(potentially) used in interactive online games (e.g., World of Warcraft), virtual worlds (e.g.,

Second Life), and sharing economies such as UBER and AirBnB.22

8 Conclusion

We provide the first fundamentals-based dynamic pricing model of cryptocurrencies and

platform tokens, taking into consideration the user-base externality and endogenous user

adoption. Because the expectation of token price appreciation induces more agents to join the

platform, tokens capitalize future user adoption, generally enhancing welfare and reducing

user-base volatility.

Our model is flexible enough to admit multiple extensions. We outline four of them in

Appendix C: 1. endogenous productivity growth; 2. cryptocurrency competition; 3. design

of state-contingent token supply; 4. time-varying systematic risk of tokens. More generally,

our neoclassical framework can be applied to the pricing of assets associated with a platform

that features endogenous user base and network externality.

22In fact, consistent with our model, when Tencent QQ introduced Q-coin, a case to which our model
is applicable, many users and merchants quickly started accepting them even outside the QQ platform,
tremendously accelerating adoption and token price appreciation. Annual trading volume reached billions of
RMB in the late 2000s and the government had to intervene. See articles China bars use of virtual money
for trading in real goods and QQ: China’s New Coin of the Realm? (WSJ). Halaburda and Sarvary (2016)
provide comprehensive discussions on various platform currencies.
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Appendix A - Proofs

A1. Proof of Proposition 1

Figure 1 illustrates the determination of Nt given At and µPt , which we take as a snapshot

of the dynamic equilibrium with time-varying productivity and expectation of price change.

The proof below takes the following steps. First, we show that given µPt , there exists a A

such that for At = A > A, the corresponding response curve,

R
(
n;A, µPt

)
= 1−G

(
u
(
n;A, µPt

))
(32)

= 1−G
(
− ln (n) + ln

(
φ

Atα

)
−
(

1− α
α

)
ln

(
1− α
r − µPt

))
, (33)

crosses the 45o line at least once in (0, 1], and for any value of At = A < A, the response curve

never crosses the 45o line in (0, 1]. After proving the existence of Nt > 0 for At ∈ [A,+∞),

we prove the uniqueness given the increasing hazard rate of g (u). Finally, we prove that Nt

increases in µPt . Before we start, for any At = A > 0, we define the value of its response

function at n = 0: R
(
0;A, µPt

)
= 0. This is consistent with that given a zero user base, each

agent derives zero transaction surplus from token holdings and chooses not to participate.

Note that limn↓0R
(
n;A, µPt

)
= 0, so the response function is continuous in n.

Given µPt , we define a mapping, A(n), from any equilibrium, non-zero value of user base,

n ∈ (0, 1], to the corresponding value of At, i.e., the unique solution to

1−G
(
− ln (n) + ln

(
φ

Atα

)
−
(

1− α
α

)
ln

(
1− α
r − µPt

))
= n, ∀n ∈ (0, 1]. (34)

This mapping is a continuous mapping on a bounded domain ⊆ (0, 1]. Then by the Least-

Upper-Bound-Property of real numbers, the image set of this mapping, {A(n), n ∈ (0, 1)},
has an infimum, which we denote by A. Now, for At = A, consider a n (A) ∈ (0, 1] such that

Equation (34) holds. For any A > A, the LHS of Equation (34) is higher than the RHS, i.e.,

R
(
n (A) ;A, µPt

)
> n (A), so that the response curve of At = A is above the 45o line at n (A).

Next, because the response function R
(
n;A, µPt

)
is continuous in n and R

(
1;A, µPt

)
≤ 1 by

definition in Equation (33), i.e., it eventually falls to or below the 45o line as n increases,

there must exist a n (A) ∈ (0, 1] such that when at At = A, Equation (34) holds by the
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Intermediate Value Theorem. Therefore, we have proved that for any At = A > A, there

exists a non-zero user base. Throughout the proof, we fix µPt , so A is a function of µPt .

Next, given g(u)
1−G(u)

is increasing, we show that the response curve crosses the 45o line

exactly once when At ∈ [A,+∞). First note that R
(
n;At, µ

P
t

)
− n either has positive

derivative or negative derivative at n = 0. If it has positive derivative (i.e., the response

curve shoots over the 45o line), then at n′, the first time the response curve crosses the 45o

line again, the derivative of R
(
n;At, µ

P
t

)
−n must be weakly negative at n′, i.e., the response

curve crosses the 45o from above,

g
(
u
(
n′;At, µ

P
t

)) 1

n′
− 1 ≤ 0. (35)

Now suppose the response curve crosses the 45o line for the second time from below at

n
′′
> n′, so the derivative of R

(
n;At, µ

P
t

)
−n at n′′ must be weakly positive, and is equal to

g
(
u
(
n′′;At, µ

P
t

)) 1

n′′
− 1 =

g
(
u
(
n′′;At, µ

P
t

))
1−G (u (n′′;At, µPt ))

− 1 (36)

<
g
(
u
(
n′;At, µ

P
t

))
1−G (u (n′;At, µPt ))

− 1

=
g
(
u
(
n′;At, µ

P
t

))
n′

− 1

< 0,

where the first inequality comes from the increasing hazard rate and the fact that u
(
n;At, µ

P
t

)
is decreasing in n for n ∈ (0, 1], and the second inequality follows from (35) and the fact that

the response curve crosses the 45o line at n′ (i.e., n′ = R
(
n′;At, µ

P
t

)
= 1−G

(
u
(
n′;At, µ

P
t

))
).

This contradicts the presumption that the response curve reaches the 45o line from below

(and the derivative of R
(
n;At, µ

P
t

)
− n is weakly positive). Therefore, we conclude that for

At ∈ [A,+∞), there exists a unique adoption level n. Now if R
(
n;At, µ

P
t

)
− n has negative

derivative at n = 0, then in the previous argument, we can replace n′ with 0 and show that

there does not exist another intersection between the response curve and the 45o line beyond

n = 0. Therefore, only if R
(
n;At, µ

P
t

)
− n has positive derivative at n = 0, do we have a

positive (non-degenerate) adoption level.

Finally, we show that the non-degenerate adoption level, Nt, is increasing in µPt . Consider
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µ̃Pt > µPt . Suppose the contrary that their corresponding adoption levels satisfy Ñt ≤ Nt.

Because we have proved that the response curve only crosses the 45o line only once and from

above, given Nt, we have

1−G
(
− ln (n) + ln

(
φ

Atα

)
−
(

1− α
α

)
ln

(
1− α
r − µPt

))
≥ n, ∀n ∈ (0, Nt] . (37)

We know that by definition,

Ñt = 1−G
(
u
(
Ñt;At, µ̃

P
t

))
= 1−G

(
− ln

(
Ñt

)
+ ln

(
φ

Atα

)
−
(

1− α
α

)
ln

(
1− α
r − µ̃Pt

))
> 1−G

(
− ln

(
Ñt

)
+ ln

(
φ

Atα

)
−
(

1− α
α

)
ln

(
1− α
r − µPt

))
≥ Ñt, (38)

where the first inequality uses µ̃Pt > µPt and the second inequality uses the fact that

Ñt ∈ (0, Nt] and the inequality (37). This contradiction implies that the adoption level

Nt has to be increasing in µPt .

A2. Derivation of the User-base Volatility

First, we consider the case without token. Using Itô’s lemma, we can differentiate Equa-

tion (24) and then, by matching coefficients with Equation (28), derive µNt and σNt :

dNt = −g
(
uNTt

)
duNTt − 1

2
g′
(
uNTt

) 〈
duNTt , duNTt

〉
, (39)

where
〈
duNTt , duNTt

〉
is the quadratic variation of duNTt . Using Itô’s lemma, we differentiate

Equation (23)

duNTt = − 1

Nt

dNt +
1

2N2
t

〈dNt, dNt〉 −
1

At
dAt +

1

2A2
t

〈dAt, dAt〉

= −
(
µNt
Nt

−
(
σNt
)2

2N2
t

+ µA −
(
σA
)2

2

)
dt−

(
σNt
Nt

+ σA
)
dZA

t . (40)
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Substituting this dynamics into Equation (39), we have

dNt =

[
g
(
uNTt

)(µNt
Nt

−
(
σNt
)2

2N2
t

+ µA −
(
σA
)2

2

)
− 1

2
g′
(
uNTt

)(σNt
Nt

+ σA
)2
]
dt

+ g
(
uNTt

)(σNt
Nt

+ σA
)
dZA

t , (41)

By matching coefficients on dZA
t with Equation (28), we can solve for σNt .

Next, we consider the tokenized economy. Once tokens are introduced, Nt depends on the

expected token price appreciation µPt . which is also a univariate function of state variable

At because by Itô’s lemma, µPt is equal to
(
dPt/Pt
dAt/At

)
µA + 1

2
d2Pt/Pt
dA2

t /A
2
t

(
σA
)2

. In equilibrium, its

law of motion is given by a diffusion process

dµPt = µµ
P

t dt+ σµ
P

t dZA
t . (42)

Now, the dynamics of ut becomes

dut =− 1

Nt

dNt +
1

2N2
t

〈dNt, dNt〉 −
1

At
dAt +

1

2A2
t

〈dAt, dAt〉

−
(

1− α
α

)(
1

r − µPt

)
dµPt −

(
1− α
α

)(
1

2 (r − µPt )
2

)〈
dµPt , dµ

P
t

〉
(43)

Let σut denote the diffusion of ut. By collecting the coefficients on dZA
t in Equation (43), we

have

σut = −σ
N
t

Nt

− σA −
(

1− α
α

)(
σµ

P

t

r − µPt

)
, (44)

which, in comparison with Equation (40), contains an extra term that reflects the volatility

of expected token price change. Note that, similar to Equation (39), we have

dNt = −g (ut) dut −
1

2
g′ (ut) 〈dut, dut〉 , (45)

so the diffusion of Nt is −g (ut)σ
u
t . Matching it with the conjectured diffusion coefficient σNt

gives σNt .
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A3. Proof of AFB < ANT

To prove this inequality, consider the agent whose type is uNT , i.e., the type whose flow

profit is equal to zero when At = ANT in the tokenless economy. Therefore, we have the

following

0 = NNTANT eu
NT

α

(
1− α
r

) 1−α
α

− φ < αANTS

(
1− α
r

) 1−α
α

− φ, (46)

where we use

NNT eu
NT

=
[
1−G

(
uNT

)]
eu

NT

<

∫ U

uNT
eu

NT

dG (u) +

∫ uNT

U

eudG (u) (47)

<

∫ U

uNT
eudG (u) +

∫ uNT

U

eudG (u) ≡ S.

Recall that in the FB economy, we have

0 = αAFBS

(
1− α
r

) 1−α
α

− φ . (48)

By comparing the right expressions in the two preceding inequalities, we conclude ANT >

AFB.

Appendix B - Parameter Choices

We choose the model parameters under the physical measure so that the model generates

patterns that are broadly consistent with user adoption and token price dynamics.

We assume that capital markets are perfectly competitive. For simplicity, we price all

assets including tokens via the following stochastic discount factor (“SDF”):

dΛt

Λt

= −rdt− ηdẐΛ
t , (49)

where r is the risk-free rate and η is the market price of risk for ẐΛ
t under the physical

measure. Let ρ denote the correlation coefficient between the SDF and productivity At.

With these assumptions, under the physical measure, At follows a GBM process, where the
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drift coefficient, µ̂A, is equal to µA + ηρσA and the volatility coefficient is σA.

We use token price and blockchain user-base dynamics from July 2010 and April 2018.

We normalize one unit of time in the model to be one year. Since we fix the token supply at

M , the token price Pt completely drives the market capitalization (PtM). We map Pt to the

aggregate market capitalization of major cryptocurrencies.23 Since we study a representative

token economy, focusing on the aggregate market averages out idiosyncratic movements due

to specificalities of token protocols.

We collect the number of active user addresses for these cryptocurrencies and map the

aggregate number to Nt. We normalize the maximum number of active addresses (in De-

cember 2017) to Nt = 0.5 and record its corresponding value of ln (At) in our model. We

scale the number of addresses in other months by that of December 2017. With December

2017 as the reference point, we calculate the corresponding value of ln (At) for each month

by applying the expected growth rate of At under the physical measure. As a result, we

focus on the stage of adoption, i.e., Nt ∈ [N, 0.5], where N = 0.0001.

Next, we choose parameter values such that the model generates data patterns in Figures

3 and 5. We set the annual risk-free rate, r, to 5% and choose µA = 2% < r to satisfy the

no-arbitage restriction. As we have previously discussed, we interpret At as a process that

broadly captures technological advances, regulatory changes, and the variety of activities

feasible on the platform, all of which suggest a fast and volatile growth of At. This consider-

ation motivates us to choose σA = 200%. This parameter gives us both a high volatility for

At but also much of the growth for At under the physical measure, as the physical-measure

drift of At is µ̂A = µA + ηρσA (Girsanov’s theorem).

To match the growth of Nt in the data, we set ηρ = 1, so that µ̂A = 202% using the

preceding equation. As a result, the user base Nt grows from N = 0.0001 to 0.5 during the

eight-year period of our data sample and the growth rate for the model-implied Nt matches

that in data. One way to generate ηρ = 1 is to set η to 1.5, which is roughly the Sharpe

ratio of ex-post efficient portfolio in the U.S. stock market (combining various factors) and

ρ to 0.67, a sensible choice of betas for the technology sector (Pástor and Veronesi (2009)).

23We include all sixteen cryptocurrencies with complete market cap and active address information on bit-
infocharts.com: AUR (Auroracoin), BCH (Bitcoin Cash), BLK (BlackCoin), BTC (Bitcoin), BTG (Bitcoin
Gold), DASH (Dashcoin), DOGE (DOGEcoin), ETC (Ethereum Classic), ETH (Ethereum), FTC (Feath-
ercoin), LTC (Litecoin), NMC (Namecoin), NVC (Novacoin), PPC (Peercoin), RDD (Reddcoin), VTC
(Vertcoin). They represent more than 2/3 of the entire crypto market.
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We use the normalized distribution for ui by truncating the Normal density function

g (u) =
√

1
2πθ2

e−
u2

2θ2 within six-sigma on both sides. As the dispersion of ui determines how

responsive Nt is to the change of At, we match the curvature of Nt with respect to At by

setting θ = 10/
√

2, which implies that thee cross-section variance of ui is 50.

We set α to 0.3 so that the senstivity of ln(Pt) with repect to Nt matches the data in the

region where Nt ∈ [N, 0.5] as we show in Figure 5.

The remaining parameters quantitatively do not affect much the equilibrium dynamics.

We set the participation cost, φ, to one and normalize M to 10 billion. As our model

features monetary neutrality, Pt is halved whenM is doubled but importantly the equilibrium

dynamics is invariant.

Appendix C - Model Extensions

C1. Endogenous Growth: from User Base to Productivity

Our analysis thus far has taken the blockchain productivity process as exogenous. In

reality, many token and cryptocurrency applications feature an endogenous dependence of

platform productivity on the user base.

A defining feature of blockchain technology is the provision of consensus on decentralized

ledgers. In a “proof-of-stake” system, the consensus is more robust when the user base is large

and dispersed because no single party is likely to hold a majority stake; in a “proof-of-work”

system, more miners potentially deliver faster and more reliable confirmation of transactions,

and miners’ participation in turn depends on the size of user base through the associated

media coverage (attention in general), transaction fees, and token price. More broadly, At

represents the general usefulness of the platform. When more users participate, more types

of activities can be done on the blockchain. Moreover, a greater user base potentially directs

greater resources and research into the blockchain community, accelerating the technological

progress.

The endogeneity of blockchain productivity and its dependence on the user base highlight

the decentralized nature of this new technology. To reflect this fact and discuss its theoretical

implications related to the growth and volatility amplification effects, we modify the process
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of At as follows:
dAt
At

=
(
µA0 + µA1 Nt

)
dt+ σAdZt. (50)

By inspection of Equation (1), the definition of trade surplus, it appears that At and Nt are

not separately identified from the perspective of individual users, because either of the two

is simply part of the marginal productivity. However, this argument ignores the fact that by

feeding Nt into the process of At, the growth rate of At is no longer i.i.d.

Consider the case where dµA (Nt) /dNt > 0. A higher level of Nt now induces faster

growth of At, which leads to a higher level of Nt in the future. Similarly, a lower current

level of Nt translates into a downward shift of the path of Nt going forward. In other words,

the endogenous growth of At induces persistence in Nt. In our benchmark setting, Nt is reset

every instant, depending on the exogenous level of At. Yet, here path dependence arises,

which tends to amplify both the growth and unconditional volatility of Nt by accumulating

and propagating shocks to At. A formal analysis of this extension is certainly important in

light of improving quantitative performances of the model.

Another way to achieve such path dependence is to assume that agents’ decision to join

the community or quit incurs an adjustment cost, so Nt becomes the other aggregate state

variable, just as in macroeconomic models where capital stock becomes an aggregate state

variable when investment is subject to adjustment cost. However, such specification does

not capture the endogenous growth of At.

C2. Alternative Tokens and Platform Competition

Many blockchain platforms accommodate not only their native tokens but also other

cryptocurrencies. For example, any ERC-20 compatible cryptocurrencies are accepted on

the Ethereum blockchain.24 To address this issue, we may consider an alternative upper

boundary of At. Define ψ as the cost of creating a new cryptocurrency that is a perfect

substitute with the token we study because it functions on the same blockchain and therefore

faces the same common blockchain productivity and agent-specific trade needs. This creates

a reflecting boundary at A characterized by a value-matching condition and a smooth-pasting

24ERC-20 defines a common list of rules that all tokens or cryptocurrencies should follow on the Ethereum
blockchain.
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condition:

P
(
A
)

= ψ and P ′
(
A
)

= 0. (51)

When token price increases to ψ, entrepreneurs outside of the model will develop a new

cryptocurrency that is compatible with the rules of our blockchain system. So, the price

level never increases beyond this value. Because it is a reflecting boundary, we need to rule

out jumps of token prices, therefore the first derivative of P (At) must be zero. Again we

have exactly three boundary conditions for a second-order ODE and an endogenous upper

boundary that uniquely pins down the solution.

Similarly, we may consider potential competing blockchain systems, and interpret ψ as

the cost of creating a new blockchain system and its native token, which together constitute

a perfect substitute for our current system. This creates the same reflecting boundary for

token price. When token price increases to ψ, entrepreneurs outside of the model will build

a new system.

Proposition 3 (Alternative Boundary). The upper boundary condition is given by Equa-

tion (51) in the two following cases: (1) the blockchain system accepts alternative tokens or

cryptocurrencies that can be developed at a unit cost of ψ; (2) an alternative blockchain sys-

tem that is a perfect substitute of the current system can be developed at a cost of ψ per unit

of its native tokens.

While our framework accommodates the effect of competition, a careful analysis of crypto

industrial organization certainly requires more ingredients, especially those that can distin-

guish between the entry of multiple cryptocurrencies into one blockchain system and com-

peting platforms/networks. Also constituting interesting future work is the impact of one

platform using another platform’s native tokens.

C3. Token Supply Schedule

In practice, many cryptocurrencies and tokens feature an increasing supply over time (for

example, Bitcoin) or state-contingent supply in order to stabilize token price (for example,

Basecoin). Our framework can be modified to accommodate this feature, and thus, serve

as a platform for experimenting with the impact of token supply on user base growth and

token price stability. For example, we may consider the law of motion of token supply M
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given by an exogenous stochastic process such as

dMt = µM (Mt, Nt) dt+ σM (Mt, Nt) dZ
A
t . (52)

The Markov equilibrium then features two aggregate state variables, At and Mt.

An alternative formulation entails incrementals of M following Poisson-arrivals, as seen

in Bitcoin’s supply schedule. This formulation has the analytical advantage that equilibria

between two Poisson arrivals still have only one state variable At. We can solve the model in

a backward induction fashion, starting from the asymptotic future where token supply has

plateaued and moving back sequentially in the Poisson time given the value function from

the previous step.

As in many macroeconomic models, our framework features monetary neutrality: dou-

bling the token supply from now on simply reduces token price by half and does not impact

any real variables. However, neutrality is only achieved if the change of token supply is

implemented uniformly and proportionally for any time going forward. If token supply is

adjusted on a contingent basis, agents’ expectation of token price appreciation is affected,

through which supply adjustments influence user base, token demand, and the total trade

surplus realized on the platform.

Finally, we emphasize that to achieve the desirable effects of a token supply schedule, the

schedule must be implemented automatically without centralized third-party interventions,

so that dispersed agents take the supply process as given when making decisions. Such

commitment to rules and protocols highlights a key difference between cryptocurrency sup-

ply and money supply by governments – through the discipline of decentralized consensus,

blockchain developers can commit to a token supply schedule.

C4. Bubbly Behavior of Token Price and Risk Premium

The expected token price appreciation under the physical measure is

µ̂Pt = µPt + ηρσPt . (53)

The covariance between token price change and SDF shock, i.e., ρσPt , is priced at η. If the

shock to blockchain productivity is orthogonal to SDF shock (ρ = 0), then µ̂Pt = µPt .
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So far, we have fixed the correlation between SDF shock and shock to At as a constant.

Yet as a blockchain platform or the general technology gains popularity, tokens become a

systematic asset. Pástor and Veronesi (2009) emphasize that the beta of new technology

tends to increase as it becomes mainstream and well adopted. We can allow the correlation

between SDF and At to depend on Nt by decomposing the technological shock into two

components under the physical measure,

dẐt = ρ (Nt) dẐ
Λ
t +

√
1− ρ (Nt)

2dẐI
t , (54)

where the standard Brownian shock, dẐI , is independent from the SDF shock, dẐΛ
t . There-

fore, the covariance between technological shock and SDF shock is ρ (Nt), where we assume

dρ/dNt > 0, that is the blockchain productivity shock becomes increasingly systematic as

the user base grows. Under the risk-neutral measure, we have

dAt
At

=
[
µ̂A − ηρ (Nt)σ

A
]
dt+ σAdZt. (55)

Consequently, the risk-neutral, expected growth rate of At is µ̂A−ηρ (Nt)σ
A, which declines

in Nt.

Therefore, as At grows, there are two opposing forces that drive Pt. On the one hand,

the mechanisms that increase Pt are still there: when At directly increases the flow utility

of token, or indirectly through Nt, token price increases. On the other hand, through the

increase of Nt, the expected growth of At under the risk-neutral measure declines, which

pushes Pt down. The former channel could dominate in the early stage of adoption while

the channel of Nt-dependent token beta dominates in the later stage of adoption. A bubble-

like behavior then ensues — Pt rises initially, and later as Nt rises, Pt declines because

the risk-neutral expectation of At growth declines, resembling the formation and burst of a

“bubble.”
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