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We study crowded markets using a symmetric continuous-time model

with strategic informed traders. We model crowdedness by assuming

that traders may have incorrect beliefs about the number of smart

traders in the market and the correlation among private signals,

which distort their inference, trading strategies, and market prices.

If traders underestimate the crowdedness, then markets are more liq-

uid, both permanent and temporary market depths tend to be higher,

traders take larger positions and trade more on short-run profit op-

portunities. In contrast, if traders overestimate the crowdedness,

then traders believe markets to be less liquid, they are more cau-

tious in both trading on their information and supplying liquidity to

others; fears of crowded markets may also lead to “illusion of liquid-

ity” so that the actual endogenous market depth is even lower than

what traders believe it to be. Crowdedness makes markets fragile, be-

cause flash crashes, triggered whenever some traders liquidate large

positions at fire-sale rates, tend to be more pronounced.
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With a dramatic growth in the asset management industry, financial markets have be-

come platforms where the sophisticated institutional players trade intensively with each

other, while retail investors are of much less importance. Even though traders usually seek

for overlooked opportunities and try to add diversity into their portfolios, many trading

strategies often become crowded. Traders are concerned about crowded markets, because

these markets tend to be more fragile and prone to crashes.

Traders come up with investment ideas for generating alphas, evaluate transaction costs

of implementing these strategies in real markets, and try to assess, often informally, to

what extent strategies might be crowded, i.e., how many other traders might be simulta-

neously entering the same strategy space and to what extent their private signals might be

correlated. While there has been lots of academic research in finance on anomalies in asset

returns and liquidity, until recently the question about crowding has received little formal

attention. In the 2009-presidential address, Jeremy Stein emphasizes this point and notes

that “for a broad class of quantitative trading strategies, an important consideration for

each individual arbitrageur is that he cannot know in real time exactly how many others are

using the same model and taking the same position as him.” Recognizing the importance

of this issue, some firms started to provide tools for identifying and measuring crowded-

ness of trades and strategies, for example, such as the “crowding scorecard” offered by the

MSCI. In this paper, we fill the gap and study theoretically the crowded-market problem,

analyzing how thinking about crowdedness interacts with other aspects of trading, such as

private information and liquidity.

We consider a stationary continuous-time model of trading among oligopolistic traders.

Traders observe flows of private information about asset’s fundamental value and trade on

their disagreement about the precision of private information. Traders are of two types.

“Smart” traders observe private information with high precision and other traders observe

private information with low precision; yet, each trader believes that he observes private

information with high precision. All traders trade strategically. They take into account

how their trades affect prices and smooth out the execution of their bets over time. This

modelling structure is borrowed from the smooth trading model of Kyle, Obizhaeva and

Wang (2017) due to its convenience and tractability.

We model crowding by assuming that traders make informed guesses about how many of
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their peers might be investing in the same trading strategies, how correlated their private

signals might be, and how many of them are smart traders. The perceived subjective

characteristics about the number of traders, the correlation among private signals, and the

number of smart traders can differ from true characteristics defining the market. Actual

characteristics are hard to observe, and trader may either underestimate or overestimate

these parameters. Our approach differs from the approach in Callahan (2004) and Stein

(2009), who propose to model crowding as the uncertainty about the number of traders,

but assume that market participants have unbiased estimates about model parameters.

Each trader trades toward a target inventory, which is proportional to the difference

between his own valuation and the average valuation of other market participants, inferred

from prices and dividends. The price-based mechanism works properly in our model, as

traders do learn from history of prices and condition their strategies on their estimates

of fundamental values. Trading strategies are not required to be “unanchored,” this is in

sharp contrast with Stein (2009). In the equilibrium, since traders optimally choose their

consumption path together with trading strategies using their subjective beliefs, strategies

depend only on traders’ subjective parameters, not the actual model parameters. Yet, the

equilibrium price also reflects the true number of traders, since it is obtained through the

actual market-clearing mechanism, which aggregates demand functions of all traders.

Can traders learn about their mistakes by observing price dynamics? For the case when

traders might mis-estimate the total number of traders, traders can learn the average of

other traders’ signals from prices, but it is impossible for them to figure out the average of

exactly how many signals get into the pricing formula. We show that under the consistency

condition that imposes a restriction on the relationship between traders’ beliefs about the

number of peers and the correlation among private signals, traders cannot learn about their

possibly wrong beliefs from observable prices and price volatility. The consistency condition

requires that traders either simultaneously underestimate or overestimate both the number

of traders and correlation among private signals, though the adjustment in correlation

estimates satisfying the consistency condition tends to be very small. The main impact

on market liquidity and trading strategies is coming from mis-estimation of the number of

traders. Thus, we view this consistency condition as a reasonable one for real-world markets.

The intuition is simple. For example, if traders simultaneously overestimate the number of

peers and correlation among private signals, i.e., they overestimate the crowdedness of the

market, then traders would expect a relatively lower volatility due to a larger number of
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peers and a relatively higher volatility due to a higher correlation among private signals.

When both effects perfectly balance each other, traders can not learn from price dynamics

about their mistakes. Similar arguments apply for the case when traders underestimate

the crowdedness.

In fact, traders can learn about their mistakes only by experimenting and deviating from

equilibrium strategies or from one-time off-equilibrium events, which may allow traders to

learn about actual slope of residual demand function. In practice, this type of experiment

can be expensive to implement. Even if traders could learn about the actual total number

of traders by obtaining some data on residual demand schedules, they still cannot know

in real time exactly how many smart traders are trading in the same direction. We study

market properties in this situation as well.

In our model, there is a temporary market depth and a permanent market depth that

depend on the execution speed and the size of executed orders, respectively. Since traders

build their calculations based on subjective market-clearing condition, the perceived market

depth may differ from actual market depth in the market. Perceived market depth differs

from actual market depth by a factor approximately equal to the ratio of the perceived

number of traders to the actual number of traders.

Fear of a crowded market may lead to illusion of liquidity. We show that when traders

overestimate how crowded the market is, they overestimate both temporary and permanent

market depth in comparison with actual market depth. However, fear of crowded markets

tends to decrease both perceived and actual market depth. Traders trade less intensively,

take smaller positions, and are less willing to supply liquidity to other traders. In contrast,

when traders underestimate how crowded the market is, they trade more aggressively, take

larger positions, and readily supply liquidity to others.

Crowded markets dominated by institutional investors are often blamed for increased

fragility and instability of financial markets, see for example Basak and Pavlova (2013).

Market crashes often occur when some market participants are liquidating substantial posi-

tions at a fast pace ( e.g., Kyle and Obizhaeva (2016)). We model one-time off-equilibrium

execution of large orders and study how the market reaction changes depending on traders’

beliefs about market crowdedness. The more traders overestimate the number of their

peers, the less they are willing to provide liquidity to others, and the more pronounced are

flash-crash patterns.

The crowded-trade hypothesis is often mentioned in discussions about some important
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finance episodes. During the market-neutral “quant meltdown” in August of 2007, some

of the most successful hedge funds suddenly experienced massive losses, even though the

overall market itself did not move much. Khandani and Lo (2010) and Pedersen (2009)

discuss a popular hypothesis that attributes this event to unprecedentedly large number

of hedge funds investing in similar quantitative strategies. The anecdotal evidence shows

that crowding in strategies may play roles during the unwinding of carry trades as well as

during the momentum crashes. Stein (2009) also illustrates the effect of crowding using

a case study about announced changes in the construction of MSCI indices in 2001-2002

that created a profit opportunity for arbitrageurs. In anticipation of trading by index

fund managers in response to changes in index weights, arbitrageurs could in theory buy

stocks whose weights were known to increase and sell stocks whose weights were known

to decrease. This strategy though did not result in predicted profits in practice, perhaps

because too many arbitrageurs rushed into this opportunity at the beginning and this led

to price overshooting followed by correction.

Our paper contributes to the existing literature on crowded markets. Stein (2009) pro-

poses a one-period model, in which some traders underreact to their private signals, and

uncertain number of arbitrageurs chase to profit on this opportunity. To keep things sim-

ple, he makes a number of simplifying assumptions by hard-wiring existence of anomalies,

restricting strategies, and considering limiting cases. Arbitrageurs do not condition their

strategies on their own estimates of fundamental values and their demand functions may

be a non-decreasing functions of asset prices. In contrast, in our model, except for overcon-

fidence, traders apply Bayes Law consistently, optimize correctly, and dynamically update

their estimates of both alphas and target inventories. Stein (2009) suggests that the effect

of crowding among arbitrageurs on market efficiency is likely to exhibit complicated pat-

terns. When there is uncertainty about the degree of crowding, in some cases prices might

be pushed further away from fundamentals.

Another related paper is Callahan (2004), who analyze the model of Kyle (1985) with

added uncertainty about the number of informed traders. Under specific assumptions

about signals of informed traders, he obtains a solution for the case when the total number

of informed traders is some unknown number less or equal to two. In contrast, we model

crowded markets in oligopolistic setting and the number of strategic informed traders can be

any number greater than two. Kondor and Zawadowski (2016) study another issue related

to crowding. They analyze how learning induced by competition affects capital allocation
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and welfare. They find that additional potential entrants do not improve efficiency of

capital allocation and decrease social welfare.

Thinking about crowded markets has recently become important in public policy discus-

sions. Regulators are increasingly concerned about whether some strategies and market

segments become crowded and whether any of them are currently at risk of unwinding.

For example, crowded trades and concentration on a small set of risk factors may create

a systemic risk for a central clearing party and financial system, when some traders are

forced to liquidate their positions, as discussed in Menkveld (2017). Our model suggests

that market turns to be more vulnerable of crashes when traders overestimate the fraction

of traders who are trading in the same direction.

It is difficult to identify and track crowded trades. A number of studies propose and test

some measures of crowdedness. Pojarliev and Levich (2011) measure the style crowdedness

in currency trades as the percentage of funds with significant positive exposure to a given

style less the percentage of funds with significant negative exposure to the same style. Polk

and Lou (2013) gauge the level of arbitrageurs crowdedness in momentum strategies from

high-frequency (daily or weekly) abnormal returns correlations among stocks in the winner

and/or loser portfolios. Sokolovski (2016) applies both measures to analyze dynamics in

returns of carry trades. Hong et al. (2013) suggest using days-to-cover metrics, defined as

the ratio of a stock’s short interest to trading volume, which is expected to be a proxy for

the cost of exiting crowded trade. Yan (2013) measures the crowdedness by combining the

short interest ratio and the exit rate of institutional investors, defined as the number of

shares liquidated; he shows that momentum losses can often be avoided by shorting only

non-crowded losers. Usually researchers find empirically that these measures provide useful

information about following up performance of strategies. Strategies may work well as long

as they are not crowded, and they tend to crash or revert when crowdedness increases.

This paper is structured as follows. Section 1 describes a continuous-time model of

crowded markets. Section 2 presents some comparative statics and studies the implications

of crowding. Section 3 examines how crowdedness may affect the magnitude of flash crashes

and implementation shortfalls. Section 4 concludes. All proofs are in the Appendix.

1. A Model of Crowded Market

We consider a dynamic model of trading among 𝑁 oligopolistic traders. There is a risky

security with zero net supply, which pays out dividends at continuous rate 𝐷(𝑡). The
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dividend 𝐷(𝑡) is publicly observable and follows a stochastic process with mean-reverting

stochastic growth rate 𝐺*(𝑡). The dividend has a constant instantaneous volatility 𝜎𝐷 > 0

and constant rate of mean reversion 𝛼𝐷 > 0,

(1) 𝑑𝐷(𝑡) := −𝛼𝐷 𝐷(𝑡) 𝑑𝑡+𝐺*(𝑡) 𝑑𝑡+ 𝜎𝐷 𝑑𝐵𝐷(𝑡),

where 𝐺*(𝑡) is unobservable growth rate. The growth rate 𝐺*(𝑡) follows an AR-1 process

with mean reversion 𝛼𝐺 > 0 and volatility 𝜎𝐺 > 0,

(2) 𝑑𝐺*(𝑡) := −𝛼𝐺 𝐺
*(𝑡) 𝑑𝑡+ 𝜎𝐺 𝑑𝐵𝐺(𝑡).

Each trader 𝑛 observes a continuous stream of private information 𝐼𝑛(𝑡) defined by

(3) 𝑑𝐼𝑛(𝑡) := 𝜏 1/2𝑛

𝐺*(𝑡)

𝜎𝐺 Ω1/2
𝑑𝑡+ 𝜌1/2𝑑𝑍(𝑡) + (1 − 𝜌)1/2𝑑𝐵𝑛(𝑡).

Since its drift is proportional to 𝐺*(𝑡), each increment 𝑑𝐼𝑛(𝑡) in the process 𝐼𝑛(𝑡) is a noisy

observation of 𝐺*(𝑡). The denominator 𝜎𝐺 Ω1/2 scales 𝐺*(𝑡) so that its conditional variance

is one. The parameter Ω measures the steady-state error variance of the trader’s estimate

of 𝐺*(𝑡) in units of time; it is defined algebraically below (see equation (8)). The precision

parameter 𝜏𝑛 measures the informativeness of the signal 𝑑𝐼𝑛(𝑡) as a signal-to-noise ratio

describing how fast new information flows into the market. The error terms are correlated,

and 𝐶𝑜𝑣(𝑑𝐼𝑛, 𝑑𝐼𝑚) = 𝜌𝑑𝑡 for 𝑚 ̸= 𝑛, where 𝜌 < 1.

The stream of dividends contains some information about the growth rate as well. Define

𝑑𝐼0(𝑡) := [𝛼𝐷 𝐷(𝑡) 𝑑𝑡+ 𝑑𝐷(𝑡)] /𝜎𝐷 and 𝑑𝐵0 := 𝑑𝐵𝐷. Then, 𝑑𝐼0(𝑡) can be written

(4) 𝑑𝐼0(𝑡) := 𝜏
1/2
0

𝐺*(𝑡)

𝜎𝐺 Ω1/2
𝑑𝑡+ 𝑑𝐵0(𝑡), where 𝜏0 :=

Ω 𝜎2
𝐺

𝜎2
𝐷

,

so that public information 𝑑𝐼0(𝑡) in the divided stream 𝐷(𝑡) has a form similar to the

notation for private information. The process 𝐼0(𝑡) is informationally equivalent to the

dividend process 𝐷(𝑡). The quantity 𝜏0 measures the precision of the dividend process.

The Brownian motions 𝑑𝐵0(𝑡), 𝑑𝑍(𝑡), 𝑑𝐵1(𝑡),. . . , 𝑑𝐵𝑁(𝑡) are independently distributed.

To model trading, we assume that all traders agree about the precision of the public

signal 𝜏0, but agree to disagree about the precisions of private signals 𝜏𝑛. Each trader 𝑛

is certain that his own private information has high precision 𝜏𝑛 = 𝜏𝐻 and 𝑁 − 1 other



7

traders can be of two types: 𝑁𝐼 − 1 traders have private information with high precision

𝜏𝐻 and the other 𝑁𝑈 := 𝑁 − 𝑁𝐼 traders have private information with low precision 𝜏𝐿,

where 𝜏𝐻 > 𝜏𝐿 ≥ 0.

Denote the fraction of other traders (except trader 𝑛 himself) with high precision in the

market as

(5) 𝜃 :=
𝑁𝐼 − 1

𝑁𝑈 +𝑁𝐼 − 1
.

This implies that 1 − 𝜃 fraction of other traders’ private information has low precision.

Traders do not know each others’ type.

To model crowded markets, we make the following two assumptions that capture two

different aspects of these markets. First, traders might make incorrect estimates about the

total number of traders; we assume that all traders symmetrically think that there are 𝑁𝑠 :=

𝑁𝐼𝑠 +𝑁𝑈𝑠 participants. Second, traders might have incorrect beliefs about correlations in

private signals (3); we assume that traders symmetrically believe that 𝐶𝑜𝑣(𝑑𝐼𝑛, 𝑑𝐼𝑚) = 𝜌𝑠𝑑𝑡

for 𝑚 ̸= 𝑛. Trader may also have subjective beliefs 𝜃𝑠 about the fraction of informed

traders. We use subscripts 𝑠 to denote subjective beliefs to differentiate them from the

actually correct parameters 𝑁 , 𝜌, and 𝜃. We assume that traders’ beliefs about the number

of traders and the correlation of signals are some known constants. There is no uncertainty

about the number of traders and correlation. We study how mistakes in traders’ views

about these parameters affect trading, prices, and liquidity.

We refer to the model with crowding as (𝑁𝐼𝑠, 𝑁𝑈𝑠, 𝜌𝑠;𝑁𝐼 , 𝑁𝑈 , 𝜌)-model, where 𝑁𝐼 , 𝑁𝑈 ,

and 𝜌 are objective parameters describing the environment, and 𝑁𝐼𝑠, 𝑁𝑈𝑠, and 𝜌𝑠 are

subjective parameters describing traders’ beliefs. We refer to the model without crowd-

ing as (𝑁𝐼 , 𝑁𝑈 , 𝜌;𝑁𝐼 , 𝑁𝑈 , 𝜌)-model, where traders have correct beliefs about the corre-

lation in private signals of market participants and the number of traders. For any

(𝑁𝐼𝑠, 𝑁𝑈𝑠, 𝜌𝑠;𝑁𝐼 , 𝑁𝑈 , 𝜌)-model, equilibrium strategies depend only on the parameters 𝑁𝐼𝑠,

𝑁𝑈𝑠, and 𝜌𝑠, since traders make their decisions based only on subjective beliefs, not the

actual parameters. The equilibrium price though is a result of the correct market clearing

based on the actual total number of traders in the market 𝑁 = 𝑁𝐼 + 𝑁𝑈 . In spite of the

fact that the equilibrium strategies depend only on the parameters 𝑁𝐼𝑠, 𝑁𝑈𝑠, and 𝜌𝑠.

Let 𝑆𝑛(𝑡) denote the inventory of trader 𝑛 at time 𝑡. Each trader 𝑛 chooses a consumption

intensity 𝑐𝑛(𝑡) and trading intensity 𝑥𝑛(𝑡) to maximize an expected constant-absolute-

risk-aversion (CARA) utility function 𝑈(𝑐𝑛(𝑠)) := −𝑒−𝐴 𝑐𝑛(𝑠) with risk aversion parameter
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𝐴. Letting 𝛽 > 0 denote a time preference parameter, trader 𝑛 solves the maximization

problem

(6) max
{𝑐𝑛(𝑡),𝑥𝑛(𝑡)}

𝐸𝑛
𝑡

{︂∫︁ ∞

𝑠=𝑡

𝑒−𝛽(𝑠−𝑡) 𝑈(𝑐𝑛(𝑠)) 𝑑𝑠

}︂
,

where trader 𝑛’s inventories follow the process 𝑑𝑆𝑛(𝑡) = 𝑥𝑛(𝑡) 𝑑𝑡 and his money holdings

𝑀𝑛(𝑡) follow the stochastic process

(7) 𝑑𝑀𝑛(𝑡) = (𝑟 𝑀𝑛(𝑡) + 𝑆𝑛(𝑡)𝐷(𝑡) − 𝑐𝑛(𝑡) − 𝑃 (𝑡) 𝑥𝑛(𝑡)) 𝑑𝑡.

Each trader trades “smoothly” in the sense that 𝑆𝑛(𝑡) is a differentiable function of time

with trading intensity 𝑥𝑛(𝑡) = 𝑑𝑆𝑛(𝑡)/𝑑𝑡. Each trader explicitly takes into account how

both the level of his inventory 𝑆𝑛(𝑡) and the derivative of his inventory 𝑥𝑛(𝑡) affect the

price of a risky asset 𝑃 (𝑡).

Each trader dynamically adjusts his estimates and their error variance. We use 𝐸𝑛
𝑡 {. . .}

to denote the expectation of trader 𝑛 calculated with respect to his information at time

𝑡. The superscript 𝑛 indicates that the expectation is taken with respect to the beliefs of

trader 𝑛. The subscript 𝑡 indicates that the expectation is taken with respect to trader

𝑛’s information set at time 𝑡, which consists of both private information as well as public

information extracted from the history of dividends and prices.

Let 𝐺𝑛(𝑡) := 𝐸𝑛
𝑡 {𝐺*(𝑡)} denote trader n’s estimate of the growth rate. Let Ω denote

the steady state error variance of the estimate of 𝐺*(𝑡), scaled in units of the standard

deviation of its innovation 𝜎𝐺. Stratonovich-Kalman-Bucy filtering implies that, for the

beliefs of any trader 𝑛, the total precision 𝜏 and scaled error variance Ω are constants that

do not vary over time and given by

(8) Ω := 𝑉 𝑎𝑟

{︂
𝐺*(𝑡) −𝐺𝑛(𝑡)

𝜎𝐺

}︂
= (2 𝛼𝐺 + 𝜏)−1,

(9) 𝜏 = 𝜏0 + 𝜏𝐻 + (𝑁𝑠 − 1)

(︁
(𝜃𝑠 − 𝜌𝑠)𝜏

1/2
𝐻 + (1 − 𝜃𝑠)𝜏

1/2
𝐿

)︁2
(1 − 𝜌𝑠)(1 + (𝑁𝑠 − 1)𝜌𝑠)

.
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Define signals of trader 𝑛 and the average signal of other traders as

(10) 𝐻𝑛(𝑡) :=

∫︁ 𝑡

𝑢=−∞
𝑒−(𝛼𝐺+𝜏) (𝑡−𝑢) 𝑑𝐼𝑛(𝑢), 𝑛 = 0, 1, . . . , 𝑁𝑠,

and

(11) 𝐻−𝑛(𝑡) := 1
𝑁𝑠−1

𝑁𝑠∑︁
𝑚=1
𝑚 ̸=𝑛

𝐻𝑚(𝑡).

The importance of each bit of information 𝑑𝐼𝑛 about the growth rate decays exponentially

at a rate 𝛼𝐺 + 𝜏 , i.e., the sum of the decay rate 𝛼𝐺 of fundamentals and the speed 𝜏 of

learning about fundamentals.

Trader 𝑛’s estimate 𝐺𝑛(𝑡) can be conveniently written as the weighted sum of three

sufficient statistics 𝐻0(𝑡), 𝐻𝑛(𝑡), and 𝐻−𝑛(𝑡), which summarize the information content of

dividends, his private information, and other traders’ private information, respectively. The

filtering formulas imply that trader 𝑛’s expected growth rate 𝐺𝑛(𝑡) is a linear combination

given by

𝐺𝑛(𝑡) := 𝜎𝐺 Ω1/2
(︁
𝜏
1/2
0 𝐻0(𝑡) + (1 − 𝜃𝑠)

(︁
𝜏
1/2
𝐻 − 𝜏

1/2
𝐿

)︁
/(1 − 𝜌𝑠)𝐻𝑛(𝑡)

+
(𝜃𝑠 − 𝜌𝑠)𝜏

1/2
𝐻 + (1 − 𝜃𝑠)𝜏

1/2
𝐿

(1 − 𝜌𝑠)(1 + (𝑁𝑠 − 1)𝜌𝑠)
(𝐻𝑛(𝑡) + (𝑁𝑠 − 1)𝐻−𝑛(𝑡))

)︁
.

(12)

This equation has a simple intuition. Each trader places the same weight 𝜏
1/2
0 on the

dividend-information signal 𝐻0(𝑡), assigns a larger weight to his own signal 𝐻𝑛(𝑡) and a

lower weight to signals of presumably 𝑁𝑠 − 1 other traders, aggregated in variable 𝐻−𝑛(𝑡).

We focus on a symmetric linear equilibrium. To reduce the number of state variables, it

is convenient to replace the three state variables 𝐻0(𝑡), 𝐻𝑛(𝑡), 𝐻−𝑛(𝑡) with two composite

state variables �̂�𝑛(𝑡) and �̂�−𝑛(𝑡) defined using a constant �̂� by

(13) �̂�𝑛(𝑡) := 𝐻𝑛(𝑡) + �̂� 𝐻0(𝑡), �̂�−𝑛(𝑡) := 𝐻−𝑛(𝑡) + �̂� 𝐻0(𝑡),

(14) �̂� :=
(1 + (𝑁𝑠 − 1)𝜌𝑠)𝜏

1/2
0

(1 + (𝑁𝑠 − 1)𝜃𝑠)𝜏
1/2
𝐻 + (𝑁𝑠 − 1)(1 − 𝜃𝑠)𝜏

1/2
𝐿

.
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The trader 𝑛 conjectures that the symmetric linear demand schedules for other traders 𝑚,

𝑚 ̸= 𝑛,𝑚 = 1, . . . , 𝑁𝑠 is given by

(15) 𝑥𝑚(𝑡) =
𝑑𝑆𝑚(𝑡)

𝑑𝑡
= 𝛾𝐷 𝐷(𝑡) + 𝛾𝐻 �̂�𝑚(𝑡) − 𝛾𝑆 𝑆𝑚(𝑡) − 𝛾𝑃 𝑃 (𝑡).

Each trader thinks that his flow-demand 𝑥𝑛(𝑡) = 𝑑𝑆𝑛(𝑡)/𝑑𝑡 must satisfy the following

market clearing

(16) 𝑥𝑛(𝑡) +
𝑁𝑠∑︁
𝑚=1
𝑚 ̸=𝑛

(︁
𝛾𝐷 𝐷(𝑡) + 𝛾𝐻 �̂�𝑚(𝑡) − 𝛾𝑆 𝑆𝑚(𝑡) − 𝛾𝑃 𝑃 (𝑡)

)︁
= 0,

which depends on his estimate 𝑁𝑠 about the number of traders in the market. Using zero

net supply restriction
∑︀𝑁𝑠

𝑚=1 𝑆𝑚(𝑡) = 0, he solves this equation for 𝑃 (𝑡) as a function of his

own trading speed 𝑥𝑛(𝑡) to obtain his estimate about the residual supply function,

(17) 𝑃 (𝑥𝑛(𝑡)) =
𝛾𝐷
𝛾𝑃

𝐷(𝑡) +
𝛾𝐻
𝛾𝑃

�̂�−𝑛(𝑡) +
𝛾𝑆

(𝑁𝑠 − 1)𝛾𝑃
𝑆𝑛(𝑡) +

1

(𝑁𝑠 − 1)𝛾𝑃
𝑥𝑛(𝑡).

Then, each trader 𝑛 exercises monopoly power in choosing how fast to demand liquidity

from other traders to profit from private information. He also exercises monopoly power

in choosing how fast to provide liquidity to the other 𝑁𝑠 − 1 traders. Trader 𝑛 solves for

his optimal consumption and trading strategy by plugging the price impact function (17)

into his dynamic optimization problem (6). Although strategies are defined in terms of

the average of other traders’ signals 𝐻−𝑛(𝑡), each trader believes that equilibrium prices

reveal the average private signal, which enables him to implement his equilibrium strategy

by conditioning his trading speed on market prices.

1.1. Prices and Consistency Condition

The equilibrium price is determined based on the actual market clearing condition which

sums up demands of the actual number of traders 𝑁 in the market,

(18)
𝑁∑︁

𝑚=1

𝑥𝑚(𝑡) = 0, and
𝑁∑︁

𝑚=1

𝑆𝑚(𝑡) = 0.
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Using equations (15) and (17), we obtain the actual equilibrium price

(19)

𝑃 (𝑡) =
𝛾𝐷(𝑁𝑠, 𝜃𝑠, 𝜌𝑠)

𝛾𝑃 (𝑁𝑠, 𝜃𝑠, 𝜌𝑠)
𝐷(𝑡) +

𝛾𝐻(𝑁𝑠, 𝜃𝑠, 𝜌𝑠)

𝛾𝑃 (𝑁𝑠, 𝜃𝑠, 𝜌𝑠)
�̂�(𝑁𝑠, 𝜃𝑠, 𝜌𝑠)𝐻0(𝑡) +

𝛾𝐻(𝑁𝑠, 𝜃𝑠, 𝜌𝑠)

𝑁𝛾𝑃 (𝑁𝑠, 𝜃𝑠, 𝜌𝑠)

𝑁∑︁
𝑚=1

𝐻𝑚(𝑡).

By contrast, each trader uses in his calculations the subjective market clearing condition

by summing up demands of the perceived number of traders 𝑁𝑠,

(20)
𝑁𝑠∑︁
𝑚=1

𝑥𝑚(𝑡) = 0, and
𝑁𝑠∑︁
𝑚=1

𝑆𝑚(𝑡) = 0.

Each trader believes that the equilibrium price is determined by

(21)

𝑃𝑠(𝑡) =
𝛾𝐷(𝑁𝑠, 𝜃𝑠, 𝜌𝑠)

𝛾𝑃 (𝑁𝑠, 𝜃𝑠, 𝜌𝑠)
𝐷(𝑡) +

𝛾𝐻(𝑁𝑠, 𝜃𝑠, 𝜌𝑠)

𝛾𝑃 (𝑁𝑠, 𝜃𝑠, 𝜌𝑠)
�̂�(𝑁𝑠, 𝜃𝑠, 𝜌𝑠)𝐻0(𝑡) +

𝛾𝐻(𝑁𝑠, 𝜃𝑠, 𝜌𝑠)

𝑁𝑠𝛾𝑃 (𝑁𝑠, 𝜃𝑠, 𝜌𝑠)

𝑁𝑠∑︁
𝑚=1

𝐻𝑚(𝑡).

The only difference between the two pricing equations (19) and (21) are indices 𝑁 and 𝑁𝑠

over which the summation of private signals is done. In the equilibrium, all calculations are

done from the perspective of traders, so only their subjective parameters enter equilibrium

demands and prices. This is, for example, why parameters 𝜌 and 𝜃 are not in the formulas.

Among all objective parameters, only the objective number of traders 𝑁 sneaks into the

pricing formula through the actual market clearing mechanism (18).

Each trader observes the market price 𝑃 (𝑡) but thinks that it is his conjectured price

𝑃𝑠(𝑡). He infers the average signal of all traders in the model, and (potentially incorrectly)

interprets it as the average of 𝑁𝑠 signals, rather than 𝑁 signals.

In continuous time, it is not difficult to estimate accurately the diffusion variance of

the process 𝑑𝑃 (𝑡) by looking at its quadratic variation. If traders simply misinterpret

information about the averages in the price, then they would be able to learn about their

mistakes from the price dynamics. For example, if traders underestimate the total number

of participants in the market (𝑁𝑠 < 𝑁), then traders would expect to observe a relatively

high price volatility comparing to what they see in the market, because errors in private

signals would not average out.

Since traders cannot know in real time exactly how many other traders are investing in

the same strategies, we make sure that incorrect estimates about the number of traders

cannot be easily falsified by observing the price dynamics. This requires that the quadratic
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variation of actual price dynamics 𝑑𝑃 (𝑡) must coincide with the quadratic variation of

perceived price dynamics 𝑑𝑃𝑠(𝑡). Using equations (19) and (21), we obtain the consistency

condition ensuring that the quadratic variation of 𝜌1/2𝑑𝑍(𝑡) + (1 − 𝜌)1/2 1
𝑁

∑︀𝑁
𝑚=1 𝑑𝐵𝑚(𝑡)

must coincide with the quadratic variation of 𝜌
1/2
𝑠 𝑑𝑍(𝑡) + (1 − 𝜌𝑠)

1/2 1
𝑁𝑠

∑︀𝑁𝑠

𝑚=1 𝑑𝐵𝑚(𝑡).

COROLLARY 1: Under the consistency condition

(22)
1 + (𝑁 − 1)𝜌

𝑁
=

1 + (𝑁𝑠 − 1)𝜌𝑠
𝑁𝑠

such that 𝑉 𝑎𝑟𝑛(𝑑𝑃 (𝑡)) = 𝑉 𝑎𝑟𝑛(𝑑𝑃𝑠(𝑡)), we have

(23) 𝐶𝑜𝑣(𝑑𝐼𝑛(𝑡), 𝑑𝑃 (𝑡)) = 𝐶𝑜𝑣(𝑑𝐼𝑛(𝑡), 𝑑𝑃𝑠(𝑡)).

The corollary means that, if the consistency condition (22) is satisfied, then for each trader,

the correlation coefficient between his private signal and the actual price change is consistent

with the subjective correlation between his private signal and price change. This condition

ensures that traders can not learn about their mistakes from price dynamics.

The consistency condition imposes the restriction on 𝑁,𝑁𝑠, 𝜌, and 𝜌𝑠. If 𝑁𝑠 < 𝑁 , then

the condition implies that 𝜌𝑠 < 𝜌, and vice versa. If traders underestimate the total number

of participants in the market (𝑁𝑠 < 𝑁), they should simultaneously underestimate the cor-

relation among their private signals (𝜌𝑠 < 𝜌) in order to bring downward the overestimated

volatility of dollar price changes due to the underestimated number of traders.

1.2. Liquidity

Equation (17) defines the subjective permanent market depth 1/𝜆𝑠 and temporary market

depth 1/𝜅𝑠, as inverse slopes of residual demand functions with respect to number of shares

traded and the rate of trading,

(24) 1/𝜆𝑠 :=
(𝑁𝑠 − 1) 𝛾𝑝

𝛾𝑆
, 1/𝜅𝑠 := (𝑁𝑠 − 1) 𝛾𝑝,

where 𝜆𝑠 is the permanent price impact coefficient and 𝜅𝑠 is the temporary price impact

coefficient according to traders’ views. Traders believe that markets are deeper when the

number of traders is higher (𝑁𝑠 is high) and they tend to be more willing to provide liquidity

to others (𝛾𝑝 is high).
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The subjective estimates of market liquidity may differ from the actual permanent market

depth 1/𝜆 and temporary market depth 1/𝜅, because in reality the price is determined by

the actual market clearing condition (16), but with 𝑁𝑠 replaced by 𝑁 . Using the market-

clearing condition (16) and equation (17), subjective permanent and temporary market

depth 1/𝜆𝑠 and 1/𝜅𝑠 are related to the actual ones as

(25) 1/𝜆𝑠 =
𝑁𝑠 − 1

𝑁 − 1
1/𝜆, 1/𝜅𝑠 =

𝑁𝑠 − 1

𝑁 − 1
1/𝜅.

The subjective market depth is 𝑁𝑠−1
𝑁−1

times of the objective one. If traders overestimate

the number of traders in the market (𝑁𝑠 > 𝑁), they also overestimate both permanent

and temporary market depth. We refer to this case as “illusion of liquidity.” If traders

underestimate the number of traders, they underestimate market depth and we refer to

this case as “illusion of illiquidity.” The subjective and objective market depth differ

approximately by a factor of 𝑁𝑠/𝑁 . For example, when traders overestimate the number

of total traders by 50 percent, the subjective market depth is larger than actual market

depth also by about 50 percent, and vice versa.

Traders do not observe actual residual demand schedules in the equilibrium. They might

be able to learn about the actual residual demand schedule’s slopes by implementing a

series of experiments and analyzing price responses to executions at some off-equilibrium

trading rates. In practice, this type of experiments however are either infeasible or very

costly to implement. Even if we assume that traders could learn about 𝑁 by obtaining

some data on residual demand schedules, they still can not learn about the fraction of

informed traders 𝜃.

1.3. Solution

The following theorem characterizes the equilibrium trading strategies and price. Traders

calculate target inventories, defined as inventory levels such that trader 𝑛 does not trade

(𝑥𝑛(𝑡) = 0). Traders update their targets dynamically and trade toward them smoothly,

thus optimizing the market impact of trading.

THEOREM 1: There exists a steady-state equilibrium with symmetric linear flow-strategies

and positive trading volume if and only if the six polynomial equations (C-38)–(C-43) have a

solution satisfying the second-order condition 𝛾𝑃 > 0 and the stationarity condition 𝛾𝑆 > 0.

Such an equilibrium has the following properties:
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1) There is an endogenously determined constant 𝐶𝐿 > 0, defined in equation (C-32),

such that trader 𝑛’s optimal flow-strategy 𝑥𝑛(𝑡) is given by

(26) 𝑥𝑛(𝑡) =
𝑑𝑆𝑛(𝑡)

𝑑𝑡
= 𝛾𝑆

(︀
𝑆𝑇𝐼
𝑛 (𝑡) − 𝑆𝑛(𝑡)

)︀
,

where 𝑆𝑇𝐼
𝑛 (𝑡) is trader 𝑛’s “target inventory” defined as

(27) 𝑆𝑇𝐼
𝑛 (𝑡) = 𝐶𝐿

(︁
�̂�𝑛(𝑡) − �̂�−𝑛(𝑡)

)︁
.

2) There is an endogenously determined constant 𝐶𝐺 > 0, defined in equation (C-32),

such that the equilibrium price is

(28) 𝑃 (𝑡) =
𝐷(𝑡)

𝑟 + 𝛼𝐷

+ 𝐶𝐺
�̄�(𝑡)

(𝑟 + 𝛼𝐷)(𝑟 + 𝛼𝐺)
,

where �̄�(𝑡) := 1
𝑁

∑︀𝑁
𝑛=1𝐺𝑛(𝑡) denotes the average expected growth rate.

Trader 𝑛 targets a long position if his own signal �̂�𝑛(𝑡) is greater than the average signal

of other traders �̂�−𝑛(𝑡) and a short position vice versa. The proportionality constant 𝐶𝐿 in

equation (27) measures the sensitivity of target inventories to the difference. The parameter

𝛾𝑆 in equation (26) measures the speed of trading as the rate at which inventories adjust

toward their target levels. The price in equation (28) immediately reveals the average of

all signals. If 𝐶𝐺 were equal to one, the price in equation (28) would equal the average of

traders’ risk-neutral buy-and-hold valuations, consistent with the Gordon’s growth formula.

Aggregation of heterogeneous beliefs in a dynamic model, which we refer to as the Keynesian

beauty contest effect, makes the multiplier 𝐶𝐺 less than one.

Obtaining an analytical solution for the equilibrium in Theorem 1 requires solving the

six polynomial equations (C-38)–(C-43). While these equations have no obvious analytical

solution, they can be solved numerically. Extensive numerical calculations lead us to con-

jecture that the existence condition for the continuous-time model is exactly the same as

the existence condition for the similar one-period model presented in Appendix A:

CONJECTURE 1: Existence Condition. A steady-state equilibrium with symmetric,

linear flow-strategies exists if and only if

(29) 𝜃𝑠 < 1 − 𝑁𝑠(1 − 𝜌𝑠)𝜏
1/2
𝐻

(𝑁𝑠 − 1)(2 + (𝑁𝑠 − 2)𝜌𝑠)(𝜏
1/2
𝐻 − 𝜏

1/2
𝐿 )

< 1.
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Equation (29) implies that, for an equilibrium with positive trading volume to exist, the

fraction of other traders whose private information has high precision 𝜃𝑠 cannot be too

high. The existence condition is reduced to 𝜏
1/2
𝐻 /𝜏

1/2
𝐿 > 2 + 𝑁𝑠

𝑁𝑠−2
if 𝜌𝑠 = 0 and 𝜃𝑠 = 0, as in

the setting of Kyle, Obizhaeva and Wang (2017). This condition requires 𝑁𝑠 ≥ 3 and 𝜏
1/2
𝐻

to be sufficiently more than twice as large as 𝜏
1/2
𝐿 .

2. Properties of Crowded Markets

In this section, we study how changes in correlation of private signals and the number

of traders whose private information has high precision affect market liquidity and traders’

trading strategies.

2.1. Effects of Changes in Correlations of Private Signals

To develop intuition, we next consider the (𝑁𝐼 , 𝑁𝑈 , 𝜌;𝑁𝐼 , 𝑁𝑈 , 𝜌)-model with traders mak-

ing no mistakes about the level of crowdedness, but the correlation 𝜌 among private in-

formation potentially may take different values. We study how changes in 𝜌 affect the

market.

0.05 0.10 0.15 0.20 0.25 0.30 0.35
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Figure 1. 𝛾𝑆 against 𝜌.

Figure 1 illustrates that the speed of trade 𝛾𝑆 increases with the correlation coefficient

𝜌.1 When traders observe private signals with highly correlated errors, they engage in a

rat race with each other, as in Foster and Vishwanathan (1996), and trade more aggres-

sively at a higher speed 𝛾𝑆 toward their target inventory levels. Figure 2 shows that as 𝜌

1In Figures 1, 2, 3, 4, and 6 parameter values are 𝑟 = 0.01, 𝐴 = 1, 𝛼𝐷 = 0.1, 𝛼𝐺 = 0.02, 𝜎𝐷 = 0.5,
𝜎𝐺 = 0.1, 𝜃 = 0.1, 𝜏𝐻 = 1, 𝜏𝐿 = 0.2.
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increases, the total precision of information 𝜏 decreases, the error variance of the growth

rate estimates increases, and the coefficient 𝛾𝑃 increases, i.e., each trader is more willing

to provide liquidity to others.2
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Figure 2. Values of 𝛾𝑃 and 𝜏 against 𝜌.

Figure 3 shows that both permanent market depth 1/𝜆 and temporary market depth 1/𝜅

increase, as 𝜌 increases. The market becomes deeper. The perceived depth coincides with

the actual market depth, because traders do not misestimate the number of their peers in

the market.
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Figure 3. Values of 1/𝜆 and 1/𝜅 against 𝜌.

Traders believe that trading becomes more valuable and the value of trading on inno-

vations to future information (built into the constant term −𝜓0 defined in trader’s value

function (C-20)) increases in correlation 𝜌, as shown in Figure 4.

2Total precision 𝜏 decreases with 𝜌 as long as 𝜌 is not very close to 1.
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Figure 4. Value of trading on innovations to future information −𝜓0 against 𝜌.

Figure 5 presents two simulated paths for target inventories (dashed lines) and actual

inventories (solid lines).3 In panel (a) where correlation 𝜌 is small, the market is less

liquid, traders adjust their inventories at a lower rate to reduce transaction costs, and

actual inventories may deviate significantly from target inventories. In panel (b) where

correlation 𝜌 is larger, the market is more liquid, traders adjust their inventories at a faster

rate, and actual inventories closely track target inventories.
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Figure 5. Simulated paths of 𝑆𝑇𝐼
𝑛 (𝑡) (Dashed) and 𝑆𝑛(𝑡) (Solid).

Figure 6 shows that the coefficient 𝐶𝐺 in the equilibrium pricing rule decreases, when

the correlation coefficient 𝜌 increases. Higher correlation among private signals leads to

3The paths are generated using equations (27), (C-18), and (C-19), which describe the dynamics of

�̂�𝑛(𝑡), �̂�−𝑛(𝑡), and 𝑆𝑇𝐼
𝑛 (𝑡). Numerical calculations in Figure 5 are based on the exogenous parameter

values 𝑟 = 0.01, 𝐴 = 1, 𝛼𝐷 = 0.1, 𝛼𝐺 = 0.02, 𝜎𝐷 = 0.5, 𝜎𝐺 = 0.1, 𝜃 = 0.1, 𝜏𝐻 = 1, 𝜏𝐿 = 0.2 in both (a)
and (b); 𝜌 = 0.05 in (a); 𝜌 = 0.5 in (b).
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Figure 6. 𝐶𝐺 against 𝜌.

more pronounced price dampening effect (𝐶𝐺 < 1). Indeed, in the model each trader

believes that other traders make mistakes and they will revise their forecasts in the future.

Due to highly correlated signals and a lot of liquidity, traders have greater incentives to

engage in short-term speculative trading and take advantage of this predictability in short-

term trading patterns of other traders, which could be quite different from expected price

dynamics in the long run, because each trader believes that at some point in the future the

price will converge to his own estimates of fundamentals.

2.2. Effects of Changes in Crowdedness

We next study properties of the (𝑁𝐼𝑠, 𝑁𝑈𝑠, 𝜌𝑠;𝑁𝐼 , 𝑁𝑈 , 𝜌)-markets where parameters 𝑁𝐼 ,

𝑁𝑈 , and 𝜌 describe the trading environment, and parameters 𝑁𝐼𝑠, 𝑁𝑈𝑠, 𝜌𝑠 describe traders’

subjective beliefs. Traders believe that there are 𝑁𝐼𝑠 and 𝑁𝑈𝑠 traders whose private infor-

mation has high precision (e.g., “smart traders”) and low precision, respectively, and that

the correlation among innovations in private signals is equal to 𝜌𝑠. We study how beliefs

of traders about the crowdedness of smart traders affect the market and its properties.

We consider two cases. In both cases, we fix the trading environment 𝑁𝐼 , 𝑁𝑈 , and

𝜌. In the first case, we vary beliefs of traders about the number of smart traders 𝑁𝐼𝑠

in the same market, but fix the number of traders whose private information has low

precision 𝑁𝑈𝑠 = 𝑁𝑈 . In the second case, we vary 𝑁𝐼𝑠 but fix the total number of traders

𝑁𝑠 = 𝑁𝐼𝑠 +𝑁𝑈𝑠 = 𝑁.4

4As we discussed, traders might implement a series of experiments and analyze price response to
executions at some off-equilibrium trading rates to estimate the total number of traders in the market 𝑁 .
However, traders cannot know in real time exactly how many of these traders are smart, i.e., they don’t
know 𝑁𝐼𝑠.
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Since traders’ estimate of the total number of traders 𝑁𝑠 may differ from actual parameter

𝑁 in the first case, we consider two subcases. In the base case, we change both 𝑁𝐼𝑠 and

𝜌𝑠 in lockstep to satisfy the consistency condition (22) so that traders can not learn about

their mistakes by observing price dynamics. The subjective correlation is calculated as

𝜌𝑠 = 1
𝑁𝑠−1

(︀
𝑁𝑠

𝑁
(1 + (𝑁 − 1)𝜌) − 1

)︀
. In another subcase, we change only 𝑁𝐼𝑠, but keep

𝜌𝑠 = 𝜌 fixed. These subcases allow us to disentangle the effects of changes in the perceived

correlation 𝜌𝑠 and the estimate of the number of traders 𝑁𝐼𝑠. The first subcase is presented

by solid lines, and the second subcase is presented in dashed lines in Figures 8, 9, 10, 13,

14, 15 and 16 below.

Figure 7 shows how 𝜌𝑠 must change with changes in 𝑁𝐼𝑠 in order to satisfy the consistency

condition. When 𝑁𝐼𝑠 is the same as the actual number of traders 𝑁𝐼 (𝑁𝐼 = 𝑁𝐼𝑠 = 30),

the subjective correlation 𝜌𝑠 converges to the actual correlation 𝜌 (𝜌 = 𝜌𝑠 = 0.20). If 𝑁𝐼𝑠

drops from 30 to 10, the subjective correlation 𝜌𝑠 changes only slightly from 0.20 to about

0.195. If 𝑁𝐼𝑠 raises from 30 to 50, the subjective correlation 𝜌𝑠 changes from 0.20 to about

0.202.5
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Figure 7. 𝜌𝑠 against 𝑁𝐼𝑠.

It means that the consistency condition requires only small changes in subjective corre-

lations in response to large changes in subjective estimates of the number of traders. Since

it is difficult to estimate the correlation among private signals in practice, this consistency

condition is practically realistic, because potentially incorrect beliefs of traders cannot be

easily falsified by observing the price dynamics. Also, in both subcases, all variables exhibit

very similar patterns, so we do not discuss these cases separately.

5Parameter values are 𝑟 = 0.01, 𝛽 = 0.05, 𝐴 = 1, 𝛼𝐷 = 0.1, 𝛼𝐺 = 0.02, 𝜎𝐷 = 0.5, 𝜎𝐺 = 0.1, 𝑁𝑈 = 40,
𝑁𝐼 = 30, 𝜌 = 0.2, 𝜏𝐻 = 1, 𝜏𝐿 = 0.
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Figure 8 plots the speed of trading 𝛾𝑆 against 𝑁𝐼𝑠 for fixed number of traders with low

precision 𝑁𝑈𝑠 = 𝑁𝑈 (left panel)6 and fixed total number of traders 𝑁𝑠 = 𝑁 (right panel).7

When traders overestimate the number of smart traders in the market, they tend to trade

less aggressively. If 𝑁𝑠 = 𝑁 is fixed in panel (b), then traders also underestimate the

number of traders with low-precision signals, which makes them to trade less aggressively

as well. If 𝑁𝑈𝑠 = 𝑁𝑈 is fixed, then there are two effects. More smart traders imply that

competition among traders becomes more fierce and information decays at a faster rate

which also increases traders’ trading speed. However, more traders with high precision also

imply that adverse price impact increases, this tends to slow down traders’ trading speed.

These two opposite effects explain why 𝛾𝑆 may first decrease and then increase slightly when

𝑁𝐼𝑠 is getting larger with fixed 𝑁𝑈 , since first the adverse price impact effect dominates

and then the competition effect dominates. In panel (a) of Figure 8 the difference between

dashed and solid lines is hardly noticeable, this suggests that the decrease in trading speed

mainly comes from overestimating the number of smart traders, not from misestimating

the correlation.
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Figure 8. Values of 𝛾𝑆 against 𝑁𝐼𝑠.

Figure 9 shows that what traders think about crowdedness also affects how large positions

they are willing to take. Traders target smaller positions when they overestimate the

crowdedness of the smart traders, since the profit opportunities get smaller. The effect is

6In Figure 10 and in the left panel of Figures 8, 9, 13, 14, 15 and 16, parameter values are 𝑟 = 0.01,
𝛽 = 0.05, 𝐴 = 1, 𝛼𝐷 = 0.1, 𝛼𝐺 = 0.02, 𝜎𝐷 = 0.5, 𝜎𝐺 = 0.1, 𝑁𝑈 = 40, 𝑁𝐼 = 30, 𝜌 = 0.2, 𝜏𝐻 = 1, 𝜏𝐿 = 0.

7In Figure 11 and in the right panel of Figures 8, 9, 13, 14, 15, and 16, parameter values are 𝑟 = 0.01,
𝐴 = 1, 𝛼𝐷 = 0.1, 𝛼𝐺 = 0.02, 𝜎𝐷 = 0.5, 𝜎𝐺 = 0.1, 𝑁 = 𝑁𝑠 = 70, 𝜏𝐻 = 1, 𝜏𝐿 = 0.
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slightly more pronounced when the total number of traders is fixed, because the adverse

price impact is more significant with an increased fraction of smart traders while fixing the

total number of traders in the market.

10 20 30 40 50

11

12

13

14

15

16

17

NIs

E
|S
nT
I (
t)
|

(a) With fixed 𝑁𝑈

10 20 30 40 50
8

10

12

14

16

18

NIs

E
|S
nT
I (
t)
|

(b) With fixed 𝑁𝑠 = 𝑁

Figure 9. Values of 𝐸|𝑆𝑇𝐼
𝑛 (𝑡)| against 𝑁𝐼𝑠.

Figure 10 plots permanent market depth 1/𝜆 and temporary market depth 1/𝜅 against

𝑁𝐼𝑠 using 𝜌𝑠 = 𝜌 (dashed curve) and 𝜌𝑠 (solid curve) satisfying the consistency condition

(22). It also plots subjective estimates of market depths 1/𝜆𝑠 and 1/𝜅𝑠. As before, the

figure suggests that the change in market depth comes mainly from misestimation of the

number of traders, not correlation among private signals.
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Figure 10. Values of 1/𝜆, 1/𝜅, 1/𝜆𝑠, and 1/𝜅𝑠 against 𝑁𝐼𝑠 for the case with fixed 𝑁𝑈 .

Fear of crowding of smart traders reduces market liquidity. Indeed, when traders over-

estimate the crowdedness of smart traders (𝑁𝐼𝑠 > 𝑁𝐼), they also expect that the market

depth is somewhat low, because everybody is less willing to provide liquidity to each other.
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In reality, the actual market depth is even lower than what traders think, 1/𝜆 < 1/𝜆𝑠

and 1/𝜅 < 1/𝜅𝑠. In contrast, when traders underestimate the number of smart traders

(𝑁𝐼𝑠 < 𝑁𝐼 and 𝜌𝑠 < 𝜌), all types of market depth increase, because traders are more ag-

gressive in trading on private information and providing liquidity to others. The actual

market depth is even higher than the perceived one (1/𝜆 > 1/𝜆𝑠 and 1/𝜅 > 1/𝜅𝑠).

Figure 11 plots permanent market depth 1/𝜆 and temporary market depth 1/𝜅 against

𝑁𝐼𝑠 with fixed 𝑁 . For this case, the perceived market depth is the same as the actual

market depth since traders correctly estimate the total number of market participants.

This figure shows that underestimating the number of smart traders 𝑁𝐼𝑠 with fixed 𝑁

tends to increase market liquidity by a larger magnitude comparing to the case with fixed

𝑁𝑈 .
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Figure 11. Values of 1/𝜆, 1/𝜅, 1/𝜆𝑠, and 1/𝜅𝑠 against 𝑁𝐼𝑠 for the case with fixed 𝑁𝑠 = 𝑁 .

Figure 12 presents two simulated paths for target inventories (dashed curve) and actual

inventories (solid curve).8 When traders underestimate the number of smart traders—

and the market is more liquid—actual inventories deviate less significantly from target

inventories since traders trade at a higher rate, as in panel (a). When traders overestimate

the number of smart traders —and the market is less liquid—actual inventories deviate

more significantly from target inventories, as in panel (b).

The left panel of Figure 13 plots 𝛾𝑃 against 𝑁𝐼𝑠 for fixed 𝑁𝑈 using 𝜌𝑠 = 𝜌 (dashed curve)

and 𝜌𝑠 (solid curve) satisfying the consistency condition (22). The right panel of Figure 13

plots 𝛾𝑃 against 𝑁𝐼𝑠 for fixed 𝑁 . As we can see from Figure 13, 𝛾𝑃 is lower (higher) when

8The paths are generated using equations (27), (C-18), and (C-19), which describe the dynamics of

�̂�𝑛(𝑡), �̂�−𝑛(𝑡), and 𝑆𝑇𝐼
𝑛 (𝑡). Numerical calculations in Figure 12 are based on the exogenous parameter

values 𝑟 = 0.01, 𝐴 = 1, 𝛼𝐷 = 0.1, 𝛼𝐺 = 0.02, 𝜎𝐷 = 0.5, 𝜎𝐺 = 0.1, 𝜏𝐻 = 1, 𝜏𝐿 = 0, 𝑁𝐼 = 30, 𝑁𝑈 = 40,
𝜌𝑠 = 𝜌 = 0.2 in both (a) and (b); 𝑁𝐼𝑠 = 20 and 𝑁𝑈𝑠 = 50 in (a); 𝑁𝐼𝑠 = 40 and 𝑁𝑈𝑠 = 30 in (b).
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Figure 12. Simulated paths of 𝑆𝑇𝐼
𝑛 (𝑡) (Dashed) and 𝑆𝑛(𝑡) (Solid).

traders overestimate (underestimate) the number of traders whose private information has

low precision.
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Figure 13. Values of 𝛾𝑃 against 𝑁𝐼𝑠.

Figure 14 illustrates changes in the total precision 𝜏 . A higher 𝜌 tends to decrease the

total precision. Overestimating the number of traders tends to increase total precision, as

illustrated by the dashed curve in Figure 14. The net effect of overestimating the number of

traders and correlation increases the total precision (as shown by the solid curve in Figure

14) and decreases the error variance of the estimate of the growth rate. This makes trading

due to agreeing to disagreement less valuable, as shown in Figure 15, the value of trading

on innovations to future information (−𝜓0) decreases.

Figure 16 presents how 𝐶𝐺 changes with 𝑁𝐼𝑠 with fixed 𝑁𝑈 and fixed 𝑁 . Figure 16
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Figure 15. Values of −𝜓0 against 𝑁𝐼𝑠.

illustrates that 𝐶𝐺 is higher when traders overestimate the number of smart traders. Over-

estimating the number of smart traders results in less pronounced price dampening (a larger

𝐶𝐺), as traders are less willing to engage in short-term speculation due to greater adverse

price impacts.

To summarize, when traders overestimate the crowdedness of the smart traders, they tend

to have smaller target inventories, trade less aggressively toward target levels, trade less

on short-run opportunities, expect less liquidity, and believe that trading is less valuable.

When traders underestimate how many other smart traders who are trading in the same

direction as them, they tend to have larger target inventories, adjust actual inventories

faster toward target levels, trade more on short-run profit opportunities, expect higher

liquidity, and are more willing to provide liquidity to others.
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Figure 16. Values of 𝐶𝐺 against 𝑁𝐼𝑠.

3. Crowding and Fire Sales

It is believed that crowding may make markets more fragile. As we discussed in the

previous section, when traders underestimate the crowdedness of smart traders, they tend

to take larger positions, trade more on short-run profit opportunities, and are more willing

to provide liquidity to others. When traders are concerned that they might have underes-

timated the crowdedness of the traders who are trading in the same direction. They would

liquidate some of their inventories and market becomes less liquid at the same time. This

tends to make market more fragile.

Our model allows us to study what would happen in the crowded market if some traders

suddenly have to liquidate large positions in a “fire sale” mode. For example, this analysis

will help us examine theoretically how the market is expected to respond to events similar

to quant meltdown in August 2007. We show that these unexpected off-equilibrium fire

sales would create flash crashes. When traders are concerned about the crowding in their

trading strategies, they trade less aggressively toward their targets and provide less liquidity

to others. We show that this makes flash crashes more substantial.

We present a numerical example of how the market would respond to an off-equilibrium

fire sale of a trader. For simplicity, suppose at time 0, a trader observes a private signal

𝐻𝑛(0) and holds some positive inventory, which is consistent with his target inventory. We

also assume that he thinks signals of other traders are at their long-term mean 𝐻−𝑛(0) = 0

and dividends 𝐷(0) = 0 (with 𝐻0(0) = 0). It follows that his inventory at time 0 is

(30) 𝑆𝑛(0) = 𝑆𝑇𝐼
𝑛 (0) = 𝐶𝐿(𝑁𝐼𝑠, 𝜌𝑠)𝐻𝑛(0) > 0.
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We explicitly state the argument (𝑁𝐼𝑠, 𝜌𝑠) on which the coefficient 𝐶𝐿 depends to emphasize

that this coefficient—as well as some other coefficients—depends on subjective beliefs of a

trader about the number of traders and correlations 𝜌𝑠 of signals. From equations (17) and

(24), we get

(31) 𝑃 (0) =
𝛾𝑆(𝑁𝐼𝑠, 𝜌𝑠)

(𝑁 − 1)𝛾𝑃 (𝑁𝐼𝑠, 𝜌𝑠)
𝑆𝑛(0) > 0.

A trader is not able to learn from the price about mistakes. Equations (19) and (21)

therefore imply that the perceived average of private signals must coincide with the actual

average.9 This is a starting consistent-with-equilibrium point of our example.

Next, assume that at time 𝑡 = 0+, all traders receive new private information, so that

trader 𝑛’s signal 𝐻𝑛(0) and other traders’ signal 𝐻−𝑛(0+) suddenly drop to zero, reducing

his target inventory from 𝑆𝑇𝐼
𝑛 (0) to 𝑆𝑇𝐼

𝑛 (0+) = 0. Since 𝐻𝑛(0+) = 𝐻−𝑛(0+) = 0, the new

equilibrium price is E𝑛
0 [𝑃 (𝑡)] = 0. Suppose also that a trader has to trade toward his target

inventory at a fire-sale speed 𝛾𝑆, which is much faster than the equilibrium rate 𝛾𝑆,

(32) �̄�𝑛(𝑡) = 𝛾𝑆
(︀
𝑆𝑇𝐼
𝑛 (𝑡) − 𝑆𝑛(𝑡)

)︀
at each point 𝑡 > 0. Since 𝛾𝑆 > 𝛾𝑆, the trader moves to his target inventory 𝑆𝑇𝐼

𝑛 (𝑡) more

aggressively. This captures the idea of a sudden rushed sale in the market.

After date 𝑡 = 0, off-equilibrium inventory 𝑆𝑛(𝑡) is expected to evolve according to

(33) 𝑆𝑛(𝑡) = e−𝛾𝑆 𝑡
(︁
𝑆𝑛(0) +

∫︁ 𝑡

𝑢=0

e𝛾𝑆 𝑢 𝛾𝑆 𝐶𝐿 (𝐻𝑛(𝑢) −𝐻−𝑛(𝑢)) 𝑑𝑢
)︁
.

A rushed sale leads to execution at a heavy discount. Trader 𝑛 can calculate the impulse-

response functions of how market prices E𝑛
0 [𝑃 (𝑡)] are expected to change in response to his

sales, described by E𝑛
0 [𝑆𝑛(𝑡)],

(34) E𝑛
0 [𝑆𝑛(𝑡)] = e−𝛾𝑆 𝑡 𝑆𝑛(0),

9For the case with fixed number of “noise traders” 𝑁𝑈 , traders’ estimate about the total number
of traders is 𝑁𝑠 while the actual number of traders is 𝑁 . The actual average of all private signals is
1/𝑁 (𝐻𝑛(0)+ (𝑁 − 1)�̆�−𝑛(0)), whereas the trader believes that the perceived average of all private signals
is equal to 1/𝑁𝑠 𝐻𝑛(0), since there are 𝑁𝑠 traders and signals of other traders are zero. Matching these

two averages, we get the average of other traders’ signals �̆�−𝑛(0) such that a trader does not learn from
the price about his misestimation of the total number of traders in the market. For the case with fixed 𝑁 ,
traders correctly estimate the total number of traders, then �̆�−𝑛(0) = 𝐻−𝑛.
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(35) E𝑛
0 [𝑃 (𝑡)] = − 𝛾𝑆 − 𝛾𝑆(𝑁𝐼𝑠, 𝜌𝑠)

(𝑁𝑠 − 1)𝛾𝑃 (𝑁𝐼𝑠, 𝜌𝑠)
e−𝛾𝑆𝑡 𝑆𝑛(0).

Figure 17 shows expected paths of future prices based on equation (35) for the case

without crowding (𝑁𝐼𝑠 = 𝑁𝐼) and with crowding (𝑁𝐼𝑠 > 𝑁𝐼). Figure 18 shows paths

of trader 𝑛’ s future inventories based on equation (34) for the case without crowding

(𝑁𝐼𝑠 = 𝑁𝐼) and with crowding (𝑁𝐼𝑠 > 𝑁𝐼).
10 There are two cases in each figure. The

first baseline case is shown by the solid red lines: If trader 𝑛 liquidates his inventory at an

equilibrium rate (𝛾𝑆 = 𝛾𝑆), then the price immediately drops to the equilibrium level of

zero, but the trader continues to trade out of his inventories smoothly over time.
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Figure 17. The Dynamics of Expected Prices With and Without Crowding.

The other case show what happens when trader 𝑛 liquidates his position at an off-

equilibrium fire-sale rate, which is five times faster than normal rate (𝛾𝑆 = 5 𝛾𝑆). In

panel (a) of Figure 17, black dashed line corresponds to price dynamics for the case with

no crowding (𝑁𝐼 = 𝑁𝐼𝑠), and blue dashed line in panel (b) of Figure 17 corresponds to

price dynamics for the case when traders are concerned about crowding (𝑁𝐼 < 𝑁𝐼𝑠).

In panel (a) of Figure 18, black dashed line corresponds to inventory dynamics for the case

with no crowding (𝑁𝐼 = 𝑁𝐼𝑠), and blue dashed line in panel (b) corresponds to inventory

dynamics for the case when traders are concerned about crowding (𝑁𝐼 < 𝑁𝐼𝑠).

In both cases with and without crowding, price paths exhibit distinct V-shaped patterns,

i.e., after a sharp initial drop the price changes its direction and converges to the new equi-

librium level. As explained in Kyle, Obizhaeva and Wang (2017), faster-than-equilibrium

trading generates “flash crashes” by increasing temporary price impact.

10Parameter values are 𝑟 = 0.01, 𝐴 = 1, 𝛼𝐷 = 0.1, 𝛼𝐺 = 0.02, 𝜎𝐷 = 0.5, 𝜎𝐺 = 0.1, 𝑁 = 𝑁𝑠 = 70,
𝑁𝐼 = 30, 𝑁𝐼𝑠 = 40, 𝜌 = 0.2, 𝜏𝐻 = 1, 𝜏𝐿 = 0, and 𝐷(0+) = 0, 𝐻0(0

+) = 0. The endogenous parameter
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Figure 18. The Dynamics of Expected Inventories With and Without Crowding.

When traders are concerned about crowding in their trading strategies, traders are more

cautious and slower in trading on their information and providing liquidity to others, there-

fore flash crashes may be more likely to occur and their price patterns may be more pro-

nounced, as indeed confirmed by more significant price changes in panel (b) of Figure 17

when 𝑁𝐼𝑠 > 𝑁𝐼 .

When traders overestimate the number of smart traders in the market, both temporary

and permanent market depth are smaller, and thus transaction costs are larger. We next

present two simple examples to illustrate how overestimating the fraction of smart traders

affects execution costs.

Suppose a “new” trader 𝑛 = 𝑁 + 1 silently enters the market and liquidates inventories

𝑆𝑁+1(𝑡) at a rate �̄�𝑁+1(𝑡), unbeknownst to the other 𝑁 traders. We can explicitly calculate

the effect on prices if a trader deviates from his optimal inventory policy 𝑆*
𝑛(𝑡) and instead

holds inventories denoted 𝑆𝑛(𝑡). As a result of the deviation, the old equilibrium price path

𝑃 *(𝑡) will be changed to a different price path, denoted 𝑃 (𝑡), given by

(36) 𝑃 (𝑡) = 𝑃 *(𝑡) + 𝜆 (𝑆𝑛(𝑡) − 𝑆*
𝑛(𝑡)) + 𝜅 (𝑥𝑛(𝑡) − 𝑥*𝑛(𝑡)) .

Since the new trader does not trade in actual equilibrium, we assume 𝑆*
𝑁+1(𝑡) = 𝑥*𝑁+1(𝑡) = 0

We measure his execution costs 𝐶 using the concept of implementation shortfall, as

described by Perold (1988). The expected price impact costs are given by

(37) 𝐸{𝐶} = 𝐸

{︂∫︁ ∞

𝑢=𝑡

(𝑃 (𝑢) − 𝑃 *(𝑢)) �̄�(𝑢) 𝑑𝑢

}︂
.

values are 𝛾𝑆(𝑁𝐼) = 15.635, for 𝑁𝐼 = 30 and 𝛾𝑆(𝑁𝐼𝑠) = 11.6015 for 𝑁𝐼𝑠 = 40, 𝛾𝑆 = 5 𝛾𝑆(𝑁𝐼𝑠) = 58.
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The expected implementation shortfall depends on how the new trader trades. Here are

two simple examples.

Example 1 : Suppose the new trader 𝑁 + 1 enters the market at date 𝑡 = 0 and liquidates

a random block of shares 𝐵, uncorrelated with signals 𝐻𝑛(𝑡), 𝑛 = 1, . . . , 𝑁 , by trading at

the constant rate �̄�(𝑡) = 𝐵/𝑇 over some interval [0, 𝑇 ]. Then his expected implementation

shortfall is given by

(38) 𝐸{𝐶1} =
(︁
𝜆+

𝜅

𝑇/2

)︁ 𝐵2

2
.

Example 2 : Suppose instead that the new trader enters the market at date 𝑡 = 0 and

liquidates the random inventory 𝐵 by trading at rate 𝑥𝑁+1(𝑡) = 𝛾𝑆 (𝐵−𝑆𝑁+1(𝑡)). Then his

inventory evolves as 𝑆(𝑡) = 𝐵(1−𝑒−𝛾𝑆 𝑡), with 𝑆(𝑡) → 𝐵 as 𝑡→ ∞, and the implementation

shortfall is given by

(39) 𝐸{𝐶2} =
(︁
𝜆+ 𝜅 𝛾𝑆

)︁ 𝐵2

2
.

When traders are concerned about crowdedness of their trading strategies, market be-

comes less liquid and the implementation shortfall increases for a trader who enters the

market and acquires certain shares of the stock. Since faster execution leads to larger

temporary price impact, overestimating the fraction of smart traders tends to have bigger

impact on the implementation shortfall when a trader needs to acquire or liquidate certain

inventory level faster.

4. Conclusion

After the Quant Meltdown of August 2007, institutional traders are increasingly con-

cerned about crowded markets, because this factor may impede their efforts to deliver

good performance and make them vulnerable to externalities imposed by other market

participants.

In this paper, we develop a continuous-time model with strategic informed traders to

study the phenomenon of crowded markets. Traders may have incorrect views about the

correlation among traders’ private signals and the number of traders chasing similar invest-

ment strategies.
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Even though equilibrium trading strategies depend only on traders’ subjective beliefs, the

equilibrium prices are determined by the actual market clearing condition, and thus the

perceived market depth may differ from the actual market depth available in the market.

Underestimation of the crowdedness of smart traders in the market increases both the

perceived and actual market depth. Traders trade more intensively, take larger positions,

and are more willing to supply liquidity to other traders. Overestimation of the crowdedness

of the market tends to increase both temporary and permanent price impact and thus

increase traders’ implementation shortfall. Traders trade less aggressively, take smaller

positions, and are less willing to supply liquidity to others.

When some traders are forced to liquidate large positions at a suboptimal fire-sale pace,

then flash crashes happen. Our paper suggests that flash-crash price patterns may be more

pronounced when traders become more concerned about the crowdedness of the market.

To reduce the risks, it is important to understand the mechanisms that drive these patterns

in crowded markets. Our analysis also implies that it is important that regulators carefully

monitor the crowding risk of many investment strategies.
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Perold, André. 1988. “The Implementation Shortfall: Paper vs. Reality.” Journal of

Portfolio Management, 14(3): 4–9.

Pojarliev, Momtchil, and Richard M. Levich. 2011. “Detecting Crowded Trades in

Currency Funds.” Financial Analysts Journal, 67(1): 26–39.



32

Polk, Christopher, and Dong Lou. 2013. “Comomentum: Inferring Arbitrage Activity

from Return Correlations.” Working Paper.

Sokolovski, Valeri. 2016. “Crowds, Crashes, and the Carry Trade.” Working Paper.

Stein, Jeremy. 2009. “Presidential Address: Sophisticated Investors and Market Effi-

ciency.” Journal of Finance, VOL.LXIV: 1517–1548.

Yan, Phillip. 2013. “Crowded Trades, Short Covering, and Momentum Crashes.” Working

Paper.



33

A. One-period Model

There are two assets. A risk free asset and a risky asset that has random liquidation

value 𝑣 ∼ 𝑁(0, 1/𝜏𝑣). Both assets are in zero net supply. Trader 𝑛 is endowed with

inventory 𝑆𝑛 with
∑︀𝑁

𝑛=1 𝑆𝑛 = 0. Traders observe signals about the normalized liquidation

value 𝜏
1/2
𝑣 𝑣 ∼ 𝑁(0, 1). All traders observe a public signal 𝑖0 := 𝜏

1/2
0 (𝜏

1/2
𝑣 𝑣) + 𝑒0 with

𝑒0 ∼ 𝑁(0, 1). Each trader 𝑛 observes a private signal 𝑖𝑛 := 𝜏
1/2
𝑛 (𝜏

1/2
𝑣 𝑣)+𝜌1/2𝑧+(1−𝜌)1/2𝑒𝑛

with 𝑒𝑛 ∼ 𝑁(0, 1), where 𝑣, 𝑧, 𝑒0, 𝑒1, . . . , 𝑒𝑁 are independently distributed.

Traders agree about the precision of the public signal 𝜏0 and agree to disagree about the

precisions of private signals 𝜏𝑛. Each trader is certain that his own private information has

a high precision 𝜏𝑛 = 𝜏𝐻 and 𝑁 − 1 other traders can be of two types: 𝑁𝐼 − 1 traders’

private information has high precision 𝜏𝐻 and the other 𝑁𝑈 := 𝑁 − 𝑁𝐼 traders’ private

information has low precision 𝜏𝐿, with 𝜏𝐻 > 𝜏𝐿 ≥ 0.

Denote the fraction of other traders (except trader 𝑛 himself) with high precision in the

market as

(A-1) 𝜃 :=
𝑁𝐼 − 1

𝑁𝑈 +𝑁𝐼 − 1
.

Each trader submits a demand schedule 𝑋𝑛(𝑝) := 𝑋𝑛(𝑖0, 𝑖𝑛, 𝑆𝑛, 𝑝) to a single-price auc-

tion. An auctioneer clears the market at price 𝑝 := 𝑝[𝑋1, . . . , 𝑋𝑁 ]. Trader 𝑛’s terminal

wealth is

(A-2) 𝑊𝑛 := 𝑣 (𝑆𝑛 +𝑋𝑛(𝑝)) − 𝑝 𝑋𝑛(𝑝).

Each trader 𝑛maximizes the same expected exponential utility function of wealth E𝑛[− e−𝐴𝑊𝑛 ]

using his own beliefs to calculate the expectation.

An equilibrium is a set of trading strategies 𝑋1, . . . , 𝑋𝑁 such that each trader’s strategy

maximizes his expected utility, taking as given the trading strategies of other traders. Let

𝑖−𝑛 := 1
𝑁−1

∑︀𝑁
𝑚=1,𝑚 ̸=𝑛 𝑖𝑚 denote the average of other traders’ signals. When trader 𝑛

conjectures that other traders submit symmetric linear demand schedules

(A-3) 𝑋𝑚(𝑖0, 𝑖𝑚, 𝑆𝑚, 𝑝) = 𝛼 𝑖0 + 𝛽 𝑖𝑚 − 𝛾 𝑝− 𝛿 𝑆𝑚, 𝑚 = 1, . . . , 𝑁, 𝑚 ̸= 𝑛,
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he infers from the market-clearing condition

(A-4) 𝑥𝑛 +
𝑁∑︁

𝑚=1
�̸�=𝑛

(𝛼 𝑖0 + 𝛽 𝑖𝑚 − 𝛾 𝑝− 𝛿 𝑆𝑚) = 0

that his residual supply schedule 𝑃 (𝑥𝑛) is a function of his quantity 𝑥𝑛 given by

(A-5) 𝑃 (𝑥𝑛) =
𝛼

𝛾
𝑖0 +

𝛽

𝛾
𝑖−𝑛 +

𝛿

(𝑁 − 1)𝛾
𝑆𝑛 +

1

(𝑁 − 1)𝛾
𝑥𝑛.

Let E𝑛[. . .] and Var𝑛[. . .] denote trader 𝑛’s expectation and variance operators conditional

on all signals 𝑖0, 𝑖1, . . . , 𝑖𝑁 . Define “total precision” 𝜏 by

(A-6) 𝜏 := (Var𝑛[𝑣])−1 = 𝜏𝑣

⎛⎜⎝1 + 𝜏0 + 𝜏𝐻 + (𝑁 − 1)

(︁
(𝜃 − 𝜌)𝜏

1/2
𝐻 + (1 − 𝜃)𝜏

1/2
𝐿

)︁2
(1 − 𝜌)(1 + (𝑁 − 1)𝜌)

⎞⎟⎠ .

The projection theorem for jointly normally distributed random variables implies

(A-7)

E𝑛[𝑣] =
𝜏
1/2
𝑣

𝜏

(︃
𝜏
1/2
0 𝑖0 +

1 − 𝜃

1 − 𝜌

(︁
𝜏
1/2
𝐻 − 𝜏

1/2
𝐿

)︁
𝑖𝑛 +

(𝜃 − 𝜌)𝜏
1/2
𝐻 + (1 − 𝜃)𝜏

1/2
𝐿

(1 − 𝜌)(1 + (𝑁 − 1)𝜌)
(𝑖𝑛 + (𝑁 − 1)𝑖−𝑛)

)︃
.

Conditional on all information, trader 𝑛’s terminal wealth 𝑊𝑛 is a normally distributed

random variable with mean and variance given by

(A-8) E𝑛[𝑊𝑛] = E𝑛[𝑣] (𝑆𝑛 + 𝑥𝑛) − 𝑃 (𝑥𝑛) 𝑥𝑛, Var𝑛[𝑊𝑛] = (𝑆𝑛 + 𝑥𝑛)2 Var𝑛[𝑣].

Maximizing this function is equivalent to maximizing E𝑛[𝑊𝑛]− 1
2
𝐴Var𝑛[𝑊𝑛]. Oligopolistic

trader 𝑛 exercises market power by taking into account how his quantity 𝑥𝑛 affects the

price 𝑃 (𝑥𝑛) on his residual supply schedule (A-5). The following Theorem characterizes

the equilibrium in this one-period model.

THEOREM 2: There exists a unique symmetric equilibrium with linear trading strategies
and nonzero trade if and only if the second-order condition

(A-9) 𝜃 < 1 − 𝑁(1 − 𝜌)𝜏
1/2
𝐻

(𝑁 − 1)(2 + (𝑁 − 2)𝜌)(𝜏
1/2
𝐻 − 𝜏

1/2
𝐿 )

holds. The equilibrium satisfies the following:
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1. Trader 𝑛 trades the quantity 𝑥*𝑛 given by

(A-10) 𝑥*𝑛 = 𝛿

(︂
1
𝐴

1 − 𝜃

1 − 𝜌

(︁
1 − 1

𝑁

)︁
𝜏 1/2𝑣 (𝜏

1/2
𝐻 − 𝜏

1/2
𝐿 ) (𝑖𝑛 − 𝑖−𝑛) − 𝑆𝑛

)︂
,

where the inventory adjustment factor 𝛿 is

(A-11) 0 < 𝛿 =
2 + (𝑁 − 2)𝜌

1 + (𝑁 − 1)𝜌
− 𝑁(1 − 𝜌)𝜏

1/2
𝐻

(𝑁 − 1)(1 − 𝜃)(1 + (𝑁 − 1)𝜌)(𝜏
1/2
𝐻 − 𝜏

1/2
𝐿 )

< 1.

2. The price 𝑝* is the average of traders’ valuations:
(A-12)

𝑝* =
1

𝑁

𝑁∑︁
𝑛=1

E𝑛[𝑣] =
𝜏
1/2
𝑣

𝜏

(︃
𝜏
1/2
0 𝑖0 +

(1 + (𝑁 − 1)𝜃)𝜏
1/2
𝐻 + (𝑁 − 1)(1 − 𝜃)𝜏

1/2
𝐿

𝑁 (1 + (𝑁 − 1)𝜌)

𝑁∑︁
𝑛=1

𝑖𝑛

)︃
.

3. The parameters 𝛼 > 0, 𝛽 > 0, and 𝛾 > 0, defining the linear trading strategies in
equation (A-3), have unique closed-form solutions defined in (C-2).

For an equilibrium with positive trading volume to exist, the fraction of traders whose

private information has high precision must satisfy condition (A-9). Each trader trades in

the direction of his private signal 𝑖𝑛, trades against the average of other traders’ signals

𝑖−𝑛, and hedges a fraction 𝛿 of his initial inventory. Equation (A-12) implies that the

equilibrium price is a weighted average of traders’ valuations with weights summing to one.

Define a trader’s “target inventory” 𝑆𝑇𝐼
𝑛 as the inventory such that he would not want

to trade (𝑥*𝑛 = 0). From equation (A-10), it is equal to

(A-13) 𝑆𝑇𝐼
𝑛 = 1

𝐴

1 − 𝜃

1 − 𝜌

(︁
1 − 1

𝑁

)︁
𝜏 1/2𝑣 (𝜏

1/2
𝐻 − 𝜏

1/2
𝐿 ) (𝑖𝑛 − 𝑖−𝑛).

Then trader 𝑛’s optimal quantity traded can be written

(A-14) 𝑥*𝑛 = 𝛿 (𝑆𝑇𝐼
𝑛 − 𝑆𝑛).

The parameter 𝛿, defined in equation (A-11), is the fraction by which traders adjust posi-

tions toward target levels. It can be proved analytically that 𝛿 increases in correlation 𝜌

and decreases in 𝜃 while fixing everything else.

From the perspective of trader 𝑛, equation (A-5) implies that price impact can be written

as a function of both 𝑥𝑛 and 𝑆𝑛,

(A-15) 𝑃 (𝑥𝑛, 𝑆𝑛) := 𝑝0,𝑛 + 𝜆 𝑆𝑛 + 𝜅 𝑥𝑛,
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where 𝑝0,𝑛 is a linear combination of random variables 𝑖0 and 𝑖−𝑛, and constants 𝜆 and 𝜅

are given by

(A-16) 𝜆 :=
𝛿

(𝑁 − 1)𝛾
=
𝐴(1 − 𝜌)

(︁
(1 + (𝑁 − 1)𝜃)𝜏

1/2
𝐻 + (𝑁 − 1)(1 − 𝜃)𝜏

1/2
𝐿

)︁
𝜏(𝑁 − 1)(1 + (𝑁 − 1)𝜌)(1 − 𝜃)(𝜏

1/2
𝐻 − 𝜏

1/2
𝐿 )

,

(A-17) 𝜅 :=
𝜆

𝛿
=

1

(𝑁 − 1)𝛾
.

It can be proved analytically that both 𝜆 and 𝜅 both decrease in correlation 𝜌 and

increase in the fraction of traders whose private information has high precision while fixing

everything the same. Market becomes more liquid if traders’ private information are highly

correlated and less liquid if the fraction of traders whose private information has high

precision increases.

B. Effects of Changes in Crowding of the Total
Market

In this section we focus on the case when traders might misestimate the total number of

traders while correctly estimate the fraction of smart traders in the market. We consider

two situations: (1) the base case when both 𝑁𝑠 and 𝜌𝑠 are changing in lockstep satisfying

the consistency condition so that traders can not learn about their mistakes by observing

price dynamics, and (2) another case when only 𝑁𝑠 is changing, but 𝜌𝑠 remains fixed. The

first case is presented by solid lines and the second case is presented in dashes lines below.

Figure B.1 shows that how 𝜌𝑠 changes with changes in 𝑁𝑠 in order to satisfy the consis-

tency condition. When 𝑁𝑠 is the same as the actual number of traders 𝑁 (𝑁 = 𝑁𝑠 = 80),

the subjective correlation 𝜌𝑠 converges to the actual correlation 𝜌 (𝜌 = 𝜌𝑠 = 0.20). If 𝑁𝑠

drops by a half to 40, the subjective correlation 𝜌𝑠 changes only slightly to about 0.19.11

Figure B.1 shows that satisfying the consistency condition only requires small changes in

subjective correlations in response to large changes in subjective estimates of the number

of traders. Since it is difficult to estimate the correlation among private signals in actual

financial markets, this consistency condition is a very reasonable one to ensure that traders’

potentially incorrect beliefs cannot be easily falsified by observing the price dynamics.

11In Figures B.1, B.2, B.3 and B.7, parameter values are 𝑟 = 0.01, 𝛽 = 0.01, 𝐴 = 1, 𝛼𝐷 = 0.1, 𝛼𝐺 = 0.02,
𝜎𝐷 = 0.5, 𝜎𝐺 = 0.1, 𝜃 = 0.1, 𝑁 = 80, 𝜌 = 0.2, 𝜏𝐻 = 1, 𝜏𝐿 = 0.1.
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Figure B.1. 𝜌𝑠 against 𝑁𝑠.

We now study how crowding affects market liquidity and traders’ trading strategies.

Figure B.2 plots the speed of trading 𝛾𝑆 against traders’ subjective belief about the number

of total market participants 𝑁𝑠. To separate the impact of the number of traders from the

impact of correlation among private signals on the trading speed, we first plot 𝛾𝑆 against

changing 𝑁𝑠 while keeping 𝜌𝑠 = 𝜌 fixed. The dashed curve illustrates that traders trade

less aggressively toward target inventory when there are fewer traders in the market (fixing

𝜌); if traders believe that there are fewer of them in the market and the competition is less

intensive, then traders trade less aggressively.

When correlation 𝜌𝑠 is adjusted to satisfy the consistency condition, traders trade toward

target inventories even slower, as depicted by the solid line in Figure B.2. The subjective

correlation is calculated as 𝜌𝑠 = 1
𝑁𝑠−1

(︀
𝑁𝑠

𝑁
(1 + (𝑁 − 1)𝜌) − 1

)︀
to satisfy the consistency

condition (22), it decreases with lower 𝑁𝑠, and a lower subjective correlation among private

signals leads to a slower trading rate 𝛾𝑆, as shown previously in Figure 1. Figure B.2 also

suggests that the decrease in trading speed comes mainly from underestimating the number

of traders, not from underestimating of the correlation among private signals. Indeed, the

difference between dashed line and solid lines are hardly noticeable. This difference is small

for most of other variables, so we will next discuss only our base case when both 𝑁𝑠 and

𝜌𝑠 are changing to satisfy the consistency condition.

The left panel of Figure B.3 plots 𝛾𝑃 against 𝑁𝑠 using 𝜌𝑠 = 𝜌 (dashed curve) and 𝜌𝑠

(solid curve) satisfying the consistency condition (22). 𝛾𝑃 is lower (higher) when traders

underestimate (overestimate) the number of market participants. The right panel of figure

B.3 illustrates changes in the total precision 𝜏 . A lower 𝜌 tends to increase the total

precision. Underestimating the number of traders tends to decrease total precision, as
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Figure B.2. Values of 𝛾𝑆 against 𝑁𝑠.

illustrated by the dashed curve in Figure B.3. The net effect of underestimating the number

of traders and correlation tends to increase the total precision (as shown by the solid curve

in Figure B.3) and decrease the error variance of the estimate of the growth rate. This

makes trading due to agreeing to disagreement less valuable, as shown in figure B.4, the

value of trading on innovations to future information (−𝜓0) decreases.
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Figure B.3. Values of 𝛾𝑃 and 𝜏 against 𝑁𝑠.

Figure B.5 presents how 𝐶𝐿 changes with 𝑁𝑠 using 𝜌𝑠 = 𝜌 (dashed curve) and 𝜌𝑠 (solid

curve) satisfying the consistency condition (22). It shows that 𝐶𝐿 is lower when traders

underestimate the total number of participants and correlation among private signals since

traders trade less aggressively with fewer number of traders. This implies traders tend to

hold smaller positions when they underestimate the number of traders.

Figure B.6 presents how 𝐶𝐺 changes with 𝑁𝑠 using 𝜌𝑠 = 𝜌 (dashed curve) and 𝜌𝑠 (solid
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Figure B.5. Values of 𝐶𝐿 against 𝑁𝑠.

curve) satisfying the consistency condition (22). Figure B.6 illustrates that 𝐶𝐺 is higher

when traders underestimate the total number of participants and correlation among private

signals. A lower 𝜌 leads to a higher 𝐶𝐺 since traders trade less aggressively while fewer

number of traders also result in a higher 𝐶𝐺 due to less intensive competition. Therefore,

underestimating the number of traders and correlation results in less pronounced price

dampening (a larger 𝐶𝐺) and traders are less willing to engage in short-term speculation.

Figure B.7 plots permanent market depth 1/𝜆 and temporary market depth 1/𝜅 against

𝑁𝑆 using 𝜌𝑠 = 𝜌 (dashed curve) and 𝜌𝑠 (solid curve) satisfying the consistency condition

(22). It also plots subjective estimates of market depths 1/𝜆𝑠 and 1/𝜅𝑠. As before, the

figure suggests that the change in market depth comes mainly from misestimation of the

number of traders, not correlation among private signals.
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When traders overestimate the crowdedness (𝑁𝑠 > 𝑁 and 𝜌𝑠 > 𝜌), traders trade more

intensively. Fear of crowding leads to illusion of liquidity in the market, and indeed market

depth increases. However, the actual market depth is much lower than the perceived one

(1/𝜆 < 1/𝜆𝑠 and 1/𝜅 < 1/𝜅𝑠). The actual permanent market depth 1/𝜆 does not change

much comparing to the case without crowing. When traders underestimate the crowdedness

(𝑁𝑠 < 𝑁 and 𝜌𝑠 < 𝜌), all types of market depth decrease, because traders trade less

aggressively on their signals and are less willing to provide liquidity. Underestimating the

crowdedness tends to reduce market liquidity, but the actual market depth is higher than

the perceived one (1/𝜆 > 1/𝜆𝑠 and 1/𝜅 > 1/𝜅𝑠). In this example, the drop in the actual

permanent market depth is not as substantial as the drop in the actual temporary market

depth. When traders underestimate the crowdedness of the market by a half (e.g., 𝑁𝑠 = 40

and 𝑁 = 80), then 1/𝜆 changes only slightly from about 150 to 140, whereas 1/𝜅 drops by

about a half from approximately 3000 to 1500.
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Figure B.7. Values of 1/𝜆, 1/𝜅, 1/𝜆𝑠, and 1/𝜅𝑠 against 𝑁𝑠.
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Figure B.8 presents two simulated paths for target inventories (dashed curve) and actual

inventories (solid curve).12 When traders underestimate the number of traders and the

correlation among private signals—and the market is less liquid—actual inventories deviate

more significantly from target inventories since traders trade at a lower rate, as in panel (a).

When traders correctly estimate the number of traders and correlation among private

signals—and the market is more liquid—actual inventories deviate less significantly from

target inventories, as in panel (b).

0.5 2.0
t

-4
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-2

-1

1

2

Sn
TI(t) and Sn(t)

(a) Underestimate 𝑁 and 𝜌
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(b) Correctly estimate 𝑁 and 𝜌

Figure B.8. Simulated paths of 𝑆𝑇𝐼
𝑛 (𝑡) (Dashed) and 𝑆𝑛(𝑡) (Solid).

To summarize, when traders overestimate crowding in the market, they tend to have

larger target inventories, trade more aggressively toward target levels, trade more on short-

run opportunities, expect more liquidity, and believe that trading is more valuable. When

traders underestimate how crowded strategies are, they tend to have smaller target inven-

tories, adjust actual inventories more slowly toward target levels, trade less on short-run

profit opportunities, expect less liquidity, and are less willing to provide liquidity to others.

Figure B.913 suggests that, in crowded markets, flash crashes may be more likely to occur

and their price patterns may be more pronounced, as indeed confirmed by more significant

price changes in Figure B.9 when 𝑁𝑠 < 𝑁 .

12The paths are generated using equations (27), (C-18), and (C-19), which describe the dynamics of

�̂�𝑛(𝑡), �̂�−𝑛(𝑡), and 𝑆𝑇𝐼
𝑛 (𝑡). Numerical calculations in Figure B.8 are based on the exogenous parameter

values 𝑟 = 0.01, 𝐴 = 1, 𝛼𝐷 = 0.1, 𝛼𝐺 = 0.02, 𝜎𝐷 = 0.5, 𝜎𝐺 = 0.1, 𝜃 = 0.1, 𝜏𝐻 = 1, 𝜏𝐿 = 0.2 in both (a)
and (b); 𝑁𝑠 = 40 < 𝑁 = 80 and 𝜌𝑠 = 0.19 < 𝜌 = 0.2 in (a); 𝑁𝑠 = 𝑁 = 80 and 𝜌𝑠 = 𝜌 = 0.2 in (b).

13Parameter values are 𝑟 = 0.01, 𝐴 = 1, 𝛼𝐷 = 0.1, 𝛼𝐺 = 0.02, 𝜎𝐷 = 0.5, 𝜎𝐺 = 0.1, 𝜃 = 𝜃𝑠 = 0, 𝜏𝐻 = 1,
𝜏𝐿 = 0.1, and 𝐷(0+) = 0, 𝐻0(0

+) = 0. The endogenous parameter values are 𝛾𝑆(𝑁, 𝜌) = 24.04, for 𝑁 = 80
and 𝜌 = 0.2; and 𝛾𝑆(𝑁𝑠, 𝜌𝑠) = 11.23 for 𝑁𝑠 = 40 and 𝜌𝑠 = 0.19, 𝛾𝑆 = 5 𝛾𝑆(𝑁𝑠, 𝜌𝑠) = 56.14.
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Figure B.9. Underestimating the Crowdedness of the Total Market Leads to More Pro-

nounced Flash-Crash Price Patterns.

C. Proofs

C.1. Proof of Theorem 2

The first-order condition yields the optimal demand:

(C-1) 𝑥𝑛 =
E𝑛[𝑣] −

(︁
𝛼
𝛾
𝑖0 + 𝛽

𝛾
𝑖−𝑛

)︁
−
(︁

𝛿
(𝑁−1)𝛾

+ 𝐴
𝜏

)︁
𝑆𝑛

2
(𝑁−1)𝛾

+ 𝐴
𝜏

.

Solving for 𝑖−𝑛 instead of 𝑝 in the market-clearing condition (A-4), substituting this solution

into equation (C-1) above, and then solving for 𝑥𝑛, yields a demand schedule𝑋𝑛(𝑖0, 𝑖𝑛, 𝑆𝑛, 𝑝)

for trader 𝑛 as a function of price 𝑝. In a symmetric linear equilibrium, the strategy chosen

by trader 𝑛 must be the same as the linear strategy (A-3) conjectured for the other traders.

Equating the corresponding coefficients of the variables 𝑖0, 𝑖𝑛, 𝑝, and 𝑆𝑛 yields a system of

four equations in terms of the four unknowns 𝛼, 𝛽, 𝛾, and 𝛿. The unique solution is

(C-2) 𝛼 =
𝜏
1/2
0 𝜏

1/2
𝑣

𝜏
𝛾, 𝛽 =

(1 − 𝜃)(𝜏
1/2
𝐻 − 𝜏

1/2
𝐿 )

𝐴(1 − 𝜌)
𝜏 1/2𝑣 𝛿,

(C-3) 𝛾 =
𝜏(1 + (𝑁 − 1)𝜌)

(1 + (𝑁 − 1)𝜃)𝜏
1/2
𝐻 + (𝑁 − 1)(1 − 𝜃)𝜏

1/2
𝐿

𝛽

𝜏
1/2
𝑣

,

(C-4) 𝛿 =
2 + (𝑁 − 2)𝜌

1 + (𝑁 − 1)𝜌
− 𝑁(1 − 𝜌)𝜏

1/2
𝐻

(𝑁 − 1)(1 − 𝜃)(1 + (𝑁 − 1)𝜌)(𝜏
1/2
𝐻 − 𝜏

1/2
𝐿 )

.
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Substituting (C-2) into (C-1) yields trader 𝑛’s optimal demand (A-10). Substituting

(A-10) into (A-5) yields the equilibrium price (A-12).

The second-order condition has the correct sign if and only if 2
(𝑁−1)𝛾

+ 𝐴
𝜏
> 0. This is

equivalent to

(C-5) 𝜃 < 1 − 𝑁(1 − 𝜌)𝜏
1/2
𝐻

(𝑁 − 1)(2 + (𝑁 − 2)𝜌)(𝜏
1/2
𝐻 − 𝜏

1/2
𝐿 )

.

C.2. Proof of Theorem 1

We assume that all traders believe that there are 𝑁𝑠 traders in the market, and that their

private signals are pairwise positively correlated with correlation coefficient of 𝜌𝑠.

Apply the Stratonovich–Kalman–Bucy filter to the filtering problem. This yields trader

n’s filtering estimate of the growth rate 𝐺𝑛(𝑡) defined by the Itô differential equation

𝑑𝐺𝑛(𝑡) = − 𝛼𝐺 𝐺𝑛(𝑡) 𝑑𝑡+ 𝜏
1/2
0 𝜎𝐺 Ω1/2

(︁
𝑑𝐼0(𝑡) −

𝜏
1/2
0 𝑑𝑡

𝜎𝐺 Ω1/2
𝐺𝑛(𝑡)

)︁
+

(︁
(1 + (𝑁𝑠 − 2)𝜌𝑠)𝜏

1/2
𝐻 − (𝑁𝑠 − 1)𝜌𝑠𝜏

1/2
𝐿

)︁
𝜎𝐺 Ω1/2

(1 − 𝜌𝑠)(1 + (𝑁𝑠 − 1)𝜌𝑠)

(︁
𝑑𝐼𝑛(𝑡) − 𝜏

1/2
𝐻 𝑑𝑡

𝜎𝐺 Ω1/2
𝐺𝑛(𝑡)

)︁
+

(𝜏
1/2
𝐿 − 𝜌𝑠𝜏

1/2
𝐻 )𝜎𝐺 Ω1/2

(1 − 𝜌𝑠)(1 + (𝑁𝑠 − 1)𝜌𝑠)

(︁ 𝑁𝑠∑︁
𝑚=1
𝑚 ̸=𝑛

𝑑𝐼𝑚(𝑡) − (𝑁𝑠 − 1)𝜏
1/2
𝐿 𝑑𝑡

𝜎𝐺 Ω1/2
𝐺𝑛(𝑡)

)︁
.

(C-6)

Rearranging terms yields

𝑑𝐺𝑛(𝑡) = − (𝛼𝐺 + 𝜏)𝐺𝑛(𝑡) 𝑑𝑡+ 𝜏
1/2
0 𝜎𝐺 Ω1/2𝑑𝐼0(𝑡) +

(𝜏
1/2
𝐿 − 𝜌𝑠𝜏

1/2
𝐻 )𝜎𝐺 Ω1/2

(1 − 𝜌𝑠)(1 + (𝑁𝑠 − 1)𝜌𝑠)

𝑁𝑠∑︁
𝑚=1
�̸�=𝑛

𝑑𝐼𝑚(𝑡)

+

(︁
(1 + (𝑁𝑠 − 2)𝜌𝑠)𝜏

1/2
𝐻 − (𝑁𝑠 − 1)𝜌𝑠𝜏

1/2
𝐿

)︁
𝜎𝐺 Ω1/2

(1 − 𝜌𝑠)(1 + (𝑁𝑠 − 1)𝜌𝑠)
𝑑𝐼𝑛(𝑡).

(C-7)

The mean-square filtering error of the estimate 𝐺(𝑡), denoted 𝜎2
𝐺 Ω(𝑡), is defined by the
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Riccati differential equation

(C-8)

𝜎2
𝐺

𝑑Ω(𝑡)

𝑑𝑡
= −2𝛼𝐺𝜎

2
𝐺Ω(𝑡)+𝜎2

𝐺−𝜎2
𝐺Ω(𝑡)

⎛⎜⎝𝜏0 + 𝜏𝐻 + (𝑁𝑠 − 1)

(︁
(𝜃𝑠 − 𝜌𝑠)𝜏

1/2
𝐻 + (1 − 𝜃𝑠)𝜏

1/2
𝐿

)︁2
(1 − 𝜌𝑠)(1 + (𝑁𝑠 − 1)𝜌𝑠)

⎞⎟⎠ .

Let Ω denote the steady state of the function of time Ω(𝑡). Using the steady-state assump-

tion 𝑑Ω(𝑡)/𝑑𝑡 = 0, solve the second equation for the steady state value Ω = Ω(𝑡) to obtain

equation (8). The error variance Ω corresponds to a steady state that balances an increase

in error variance due to innovations 𝑑𝐵𝐺(𝑡) in the true growth rate with a reduction in

error variance due to (1) mean reversion of the true growth rate at rate 𝛼𝐺 and (2) arrival

of new information with total precision 𝜏 .

Note that Ω is not a free parameter but is instead determined as an endogenous function

of the other parameters. Equation (8) implies that Ω turns out to be the solution to

the quadratic equation Ω−1 = 2 𝛼𝐺 + 𝜏 . In equations (3) and (4), we scaled the units

with which precision is measured by the endogenous parameter Ω. This leads to simpler

filtering expressions. The estimate 𝐺𝑛(𝑡) can be conveniently written as the weighted sum

of 𝑁𝑠 + 1 sufficient statistics 𝐻𝑛(𝑡) corresponding to 𝑁𝑠 + 1 information flows 𝑑𝐼𝑛. The

sufficient statistics 𝐻𝑛(𝑡) is defined by equation (10). 𝐺𝑛(𝑡) becomes a linear combination

of sufficient statistics 𝐻𝑛(𝑡) as given by equation (12). Using the two composite signals,

�̂�𝑛(𝑡) and �̂�−𝑛(𝑡), defined in equation (13), trader 𝑛’s estimate of the dividend growth rate

can be expressed as a function of the two composite signals �̂�𝑛(𝑡) and �̂�−𝑛(𝑡) as

𝐺𝑛(𝑡) := 𝜎𝐺 Ω1/2
(︁(︁(1 − 𝜃𝑠)(𝜏

1/2
𝐻 − 𝜏

1/2
𝐿 )

1 − 𝜌𝑠
+

(𝜃𝑠 − 𝜌𝑠)𝜏
1/2
𝐻 + (1 − 𝜃𝑠)𝜏

1/2
𝐿

(1 − 𝜌𝑠)(1 + (𝑁𝑠 − 1)𝜌𝑠)

)︁
�̂�𝑛(𝑡)

+
(𝜃𝑠 − 𝜌𝑠)𝜏

1/2
𝐻 + (1 − 𝜃𝑠)𝜏

1/2
𝐿

(1 − 𝜌𝑠)(1 + (𝑁𝑠 − 1)𝜌𝑠)
(𝑁𝑠 − 1)�̂�−𝑛(𝑡)

)︁
.

(C-9)

Define the processes 𝑑𝐵𝑛
0 , 𝑑𝐵𝑛

𝑛 , and 𝑑𝐵𝑛
𝑚, 𝑚 = 1, . . . , 𝑁𝑠, 𝑚 ̸= 𝑛, by

(C-10) 𝑑𝐵𝑛
0 (𝑡) = 𝜏

1/2
0

𝐺*(𝑡) −𝐺𝑛(𝑡)

𝜎𝐺 Ω1/2
𝑑𝑡+ 𝑑𝐵0(𝑡),

(C-11) 𝑑𝐵𝑛
𝑛(𝑡) = 𝜏

1/2
𝐻

𝐺*(𝑡) −𝐺𝑛(𝑡)

𝜎𝐺 Ω1/2
𝑑𝑡+ 𝜌1/2𝑠 𝑑𝑍(𝑡) + (1 − 𝜌𝑠)

1/2𝑑𝐵𝑛(𝑡),
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and

(C-12) 𝑑𝐵𝑛
𝑚(𝑡) = (𝜃𝑠𝜏

1/2
𝐻 +(1−𝜃𝑠)𝜏 1/2𝐿 )

𝐺*(𝑡) −𝐺𝑛(𝑡)

𝜎𝐺 Ω1/2
𝑑𝑡++𝜌1/2𝑠 𝑑𝑍(𝑡)+(1−𝜌𝑠)1/2𝑑𝐵𝑚(𝑡).

The superscript 𝑛 indicates conditioning on beliefs of trader 𝑛. These 𝑁𝑠 + 1 processes

are correlated distributed Brownian motions from the perspective of trader 𝑛. Trader 𝑛

believes that signals change as follows:

(C-13) 𝑑𝐻0(𝑡) = −(𝛼𝐺 + 𝜏)𝐻0(𝑡) 𝑑𝑡+ 𝜏
1/2
0

𝐺𝑛(𝑡)

𝜎𝐺 Ω1/2
𝑑𝑡+ 𝑑𝐵𝑛

0 (𝑡),

(C-14) 𝑑𝐻𝑛(𝑡) = −(𝛼𝐺 + 𝜏)𝐻𝑛(𝑡) 𝑑𝑡+ 𝜏
1/2
𝐻

𝐺𝑛(𝑡)

𝜎𝐺 Ω1/2
𝑑𝑡+ 𝑑𝐵𝑛

𝑛(𝑡),

(C-15)

𝑑𝐻−𝑛(𝑡) = −(𝛼𝐺 + 𝜏)𝐻−𝑛(𝑡) 𝑑𝑡+ (𝜃𝑠𝜏
1/2
𝐻 + (1 − 𝜃𝑠)𝜏

1/2
𝐿 )

𝐺𝑛(𝑡)

𝜎𝐺 Ω1/2
𝑑𝑡+

1

𝑁𝑠 − 1

𝑁𝑠∑︁
𝑚=1
𝑚 ̸=𝑛

𝑑𝐵𝑛
𝑚(𝑡).

Note that each signal drifts toward zero at rate 𝛼𝐺 + 𝜏 and drifts toward the optimal

forecast 𝐺𝑛(𝑡) at a rate proportional to the square root of the signal’s precision 𝜏
1/2
0 , 𝜏

1/2
𝐻 ,

or 𝜃𝑠𝜏
1/2
𝐻 + (1 − 𝜃𝑠)𝜏

1/2
𝐿 , respectively.

In terms of the composite variables �̂�𝑛 and �̂�−𝑛, we conjecture (and verify below) a

steady-state value function of the form 𝑉 (𝑀𝑛, 𝑆𝑛, 𝐷, �̂�𝑛, �̂�−𝑛). Letting (𝑐𝑛(𝑡), 𝑥𝑛(𝑡)) denote

consumption and investment choices, write

(C-16) 𝑉
(︁
𝑀𝑛, 𝑆𝑛, 𝐷, �̂�𝑛, �̂�−𝑛

)︁
:= max

[𝑐𝑛(𝑡),𝑥𝑛(𝑡)]
E𝑛
𝑡

[︂∫︁ ∞

𝑠=𝑡

− e−𝛽(𝑠−𝑡)−𝐴 𝑐𝑛(𝑠) 𝑑𝑠

]︂
,

where 𝑃 (𝑥𝑛(𝑡)) is given by equation (17), dividends follow equation (1), inventories follow

𝑑𝑆𝑛(𝑡) = 𝑥𝑛(𝑡) 𝑑𝑡, the change in cash holdings 𝑑𝑀𝑛(𝑡) follows

(C-17) 𝑑𝑀𝑛(𝑡) = (𝑟 𝑀𝑛(𝑡) + 𝑆𝑛(𝑡)𝐷(𝑡) − 𝑐𝑛(𝑡) − 𝑃 (𝑥𝑛(𝑡)) 𝑥𝑛(𝑡)) 𝑑𝑡,

and signals �̂�𝑛 and �̂�−𝑛 are given by

(C-18) 𝑑�̂�𝑛(𝑡) = −(𝛼𝐺 + 𝜏) �̂�𝑛(𝑡) 𝑑𝑡+
𝜏
1/2
𝐻 + �̂�𝜏

1/2
0

𝜎𝐺 Ω1/2
𝐺𝑛(𝑡) 𝑑𝑡+ �̂� 𝑑𝐵𝑛

0 (𝑡) + 𝑑𝐵𝑛
𝑛(𝑡),
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(C-19)

𝑑�̂�−𝑛(𝑡) = −(𝛼𝐺+𝜏)�̂�−𝑛(𝑡)𝑑𝑡+
𝜃𝑠𝜏

1/2
𝐻 + (1 − 𝜃𝑠)𝜏

1/2
𝐿 + �̂�𝜏

1/2
0

𝜎𝐺 Ω1/2
𝐺𝑛(𝑡)𝑑𝑡+�̂�𝑑𝐵𝑛

0 (𝑡)+
1

𝑁𝑠 − 1

𝑁𝑠∑︁
𝑚=1
�̸�=𝑛

𝑑𝐵𝑛
𝑚(𝑡).

The dynamics of �̂�𝑛 and �̂�−𝑛 in equations (C-18) and (C-19) can be derived from equa-

tions (C-13), (C-14), and (C-15).

Note that the coefficient 𝜏
1/2
𝐻 + �̂�𝜏

1/2
0 in the second line of equation (C-18) is different

from the coefficient 𝜃𝑠𝜏
1/2
𝐻 + (1− 𝜃𝑠)𝜏

1/2
𝐿 + �̂�𝜏

1/2
0 in the second line of equation (C-19). This

difference captures the fact that—in addition to disagreeing about the value of the asset in

the present—traders also disagree about the dynamics of their future valuations.

We conjecture and verify that the value function 𝑉 (𝑀𝑛, 𝑆𝑛, 𝐷, �̂�𝑛, �̂�−𝑛) has the specific

quadratic exponential form

𝑉
(︁
𝑀𝑛, 𝑆𝑛, 𝐷, �̂�𝑛, �̂�−𝑛

)︁
= − exp

(︁
𝜓0 + 𝜓𝑀𝑀𝑛 + 1

2
𝜓𝑆𝑆𝑆

2
𝑛 + 𝜓𝑆𝐷𝑆𝑛𝐷

+ 𝜓𝑆𝑛 𝑆𝑛�̂�𝑛 + 𝜓𝑆𝑥 𝑆𝑛�̂�−𝑛 + 1
2
𝜓𝑛𝑛 �̂�

2
𝑛 + 1

2
𝜓𝑥𝑥 �̂�

2
−𝑛 + 𝜓𝑛𝑥 �̂�𝑛�̂�−𝑛

)︁
.

(C-20)

The nine constants 𝜓0, 𝜓𝑀 , 𝜓𝑆𝑆, 𝜓𝑆𝐷, 𝜓𝑆𝑛, 𝜓𝑆𝑥, 𝜓𝑛𝑛, 𝜓𝑥𝑥, and 𝜓𝑛𝑥 have values consistent

with a steady-state equilibrium. The Hamilton–Jacobi–Bellman (HJB) equation corre-

sponding to the conjectured value function 𝑉 (𝑀𝑛, 𝑆𝑛, 𝐷, �̂�𝑛, �̂�−𝑛) in equation (C-16) is

0 = max
𝑐𝑛,𝑥𝑛

[︂
𝑈(𝑐𝑛) − 𝛽𝑉 +

𝜕𝑉

𝜕𝑀𝑛

(𝑟𝑀𝑛 + 𝑆𝑛𝐷 − 𝑐𝑛 − 𝑃 (𝑥𝑛) 𝑥𝑛) +
𝜕𝑉

𝜕𝑆𝑛

𝑥𝑛

]︂
+
𝜕𝑉

𝜕𝐷
(−𝛼𝐷𝐷 +𝐺𝑛(𝑡)) +

𝜕𝑉

𝜕�̂�𝑛

(︃
−(𝛼𝐺 + 𝜏)�̂�𝑛(𝑡) +

𝜏
1/2
𝐻 + �̂�𝜏

1/2
0

𝜎𝐺 Ω1/2
𝐺𝑛(𝑡)

)︃
+ 1

2

𝜕2𝑉

𝜕𝐷2
𝜎2
𝐷

+
𝜕𝑉

𝜕�̂�−𝑛

(︃
−(𝛼𝐺 + 𝜏)�̂�−𝑛(𝑡) +

𝜃𝑠𝜏
1/2
𝐻 + (1 − 𝜃𝑠)𝜏

1/2
𝐿 + �̂�𝜏

1/2
0

𝜎𝐺 Ω1/2
𝐺𝑛(𝑡)

)︃
+ 1

2

𝜕2𝑉

𝜕�̂�2
𝑛

(︀
1 + �̂�2

)︀
+ 1

2

𝜕2𝑉

𝜕�̂�2
−𝑛

(︂
𝜌𝑠 +

1 − 𝜌𝑠
𝑁𝑠 − 1

+ �̂�2
)︂

+

(︂
𝜕2𝑉

𝜕𝐷𝜕�̂�𝑛

+
𝜕2𝑉

𝜕𝐷𝜕�̂�−𝑛

)︂
�̂�𝜎𝐷 +

𝜕2𝑉

𝜕�̂�𝑛𝜕�̂�−𝑛

(𝜌𝑠 + �̂�2).

(C-21)

For the specific quadratic specification of the value function in equation (C-20), the HJB
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equation becomes

0 = min
𝑐𝑛,𝑥𝑛

[︂
−e−𝐴𝑐𝑛

𝑉
− 𝛽 + 𝜓𝑀(𝑟𝑀𝑛 + 𝑆𝑛 𝐷 − 𝑐𝑛 − 𝑃 (𝑥𝑛) 𝑥𝑛)

+ (𝜓𝑆𝑆𝑆𝑛 + 𝜓𝑆𝐷𝐷 + 𝜓𝑆𝑛�̂�𝑛 + 𝜓𝑆𝑥�̂�−𝑛)𝑥𝑛

]︁
+ 𝜓𝑆𝐷𝑆𝑛(−𝛼𝐷𝐷 +𝐺𝑛(𝑡))

+
(︁
𝜓𝑆𝑛𝑆𝑛 + 𝜓𝑛𝑛�̂�𝑛 + 𝜓𝑛𝑥�̂�−𝑛

)︁(︁
− (𝛼𝐺 + 𝜏)�̂�𝑛(𝑡) +

𝜏
1/2
𝐻 + �̂�𝜏

1/2
0

𝜎𝐺 Ω1/2
𝐺𝑛(𝑡)

)︁
+
(︁
𝜓𝑆𝑥𝑆𝑛 + 𝜓𝑥𝑥�̂�−𝑛 + 𝜓𝑛𝑥�̂�𝑛

)︁(︃
−(𝛼𝐺 + 𝜏)�̂�−𝑛(𝑡) +

𝜃𝑠𝜏
1/2
𝐻 + (1 − 𝜃𝑠)𝜏

1/2
𝐿 + �̂�𝜏

1/2
0

𝜎𝐺 Ω1/2
𝐺𝑛(𝑡)

)︃
+ 1

2
𝜓2
𝑆𝐷𝑆

2
𝑛𝜎

2
𝐷 + 1

2

(︁
(𝜓𝑆𝑛𝑆𝑛 + 𝜓𝑛𝑛�̂�𝑛 + 𝜓𝑛𝑥�̂�−𝑛)2 + 𝜓𝑛𝑛

)︁ (︀
1 + �̂�2

)︀
+ 1

2

(︁
(𝜓𝑆𝑥𝑆𝑛 + 𝜓𝑥𝑥�̂�−𝑛 + 𝜓𝑛𝑥�̂�𝑛)2 + 𝜓𝑥𝑥

)︁ (︂
𝜌𝑠 +

1 − 𝜌𝑠
𝑁𝑠 − 1

+ �̂�2
)︂

+
(︁

(𝜓𝑆𝑛 + 𝜓𝑆𝑥)𝑆𝑛 + (𝜓𝑛𝑛 + 𝜓𝑛𝑥)�̂�𝑛 + (𝜓𝑥𝑥 + 𝜓𝑛𝑥)�̂�−𝑛

)︁
𝜓𝑆𝐷𝑆𝑛�̂�𝜎𝐷

+
(︁

(𝜓𝑆𝑛𝑆𝑛 + 𝜓𝑛𝑛�̂�𝑛 + 𝜓𝑛𝑥�̂�−𝑛) (𝜓𝑆𝑥𝑆𝑛 + 𝜓𝑥𝑥�̂�−𝑛 + 𝜓𝑛𝑥�̂�𝑛) + 𝜓𝑛𝑥

)︁
(𝜌𝑠 + �̂�2).

(C-22)

The solution for optimal consumption is

(C-23) 𝑐𝑛(𝑡) = − 1

𝐴
log
(︁𝜓𝑀 𝑉 (𝑡)

𝐴

)︁
.

The optimal trading strategy is a linear function of the state variables given by

𝑥𝑛(𝑡) =
(𝑁𝑠 − 1)𝛾𝑃

2𝜓𝑀

(︃(︂
𝜓𝑆𝐷 − 𝜓𝑀𝛾𝐷

𝛾𝑃

)︂
𝐷(𝑡) +

(︂
𝜓𝑆𝑆 − 𝜓𝑀𝛾𝑆

(𝑁𝑠 − 1)𝛾𝑃

)︂
𝑆𝑛(𝑡)

+ 𝜓𝑆𝑛 �̂�𝑛(𝑡) +

(︂
𝜓𝑆𝑥 −

𝜓𝑀𝛾𝐻
𝛾𝑃

)︂
�̂�−𝑛(𝑡)

)︃
.

(C-24)

Trader 𝑛 can infer from the market-clearing condition (16) that �̂�−𝑛 is given by

(C-25) �̂�−𝑛(𝑡) =
𝛾𝑃
𝛾𝐻

(︂
𝑃 (𝑡) −𝐷(𝑡)

𝛾𝐷
𝛾𝑃

)︂
− 1

(𝑁𝑠 − 1)𝛾𝐻
𝑥𝑛(𝑡) − 𝛾𝑆

(𝑁 − 1)𝛾𝐻
𝑆𝑛(𝑡).

Plugging equation (C-25) into equation (C-24) yields 𝑥𝑛(𝑡) as a linear demand schedule
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given by

𝑥𝑛(𝑡) =
(𝑁𝑠 − 1)𝛾𝑃

𝜓𝑀

(︂
1 +

𝜓𝑆𝑥

𝜓𝑀

𝛾𝑃
𝛾𝐻

)︂−1

·

(︃(︂
𝜓𝑆𝐷 − 𝜓𝑆𝑥

𝛾𝐷
𝛾𝐻

)︂
𝐷(𝑡) +

(︂
𝜓𝑆𝑆 − 𝜓𝑆𝑥

𝛾𝑆
(𝑁𝑠 − 1)𝛾𝐻

)︂
𝑆𝑛(𝑡)

+ 𝜓𝑆𝑛 �̂�𝑛(𝑡) +

(︂
𝜓𝑆𝑥

𝛾𝑃
𝛾𝐻

− 𝜓𝑀

)︂
𝑃 (𝑡)

)︃
.

(C-26)

Equating the coefficients of 𝐷(𝑡), �̂�𝑛(𝑡), 𝑆𝑛(𝑡), and 𝑃 (𝑡) in equation (C-26) to the con-

jectured coefficients 𝛾𝐷, 𝛾𝐻 , −𝛾𝑆, and −𝛾𝑃 results in the following four equations:

(C-27)
(𝑁𝑠 − 1)𝛾𝑃

𝜓𝑀

(︂
1 +

𝜓𝑆𝑥

𝜓𝑀

𝛾𝑃
𝛾𝐻

)︂−1 (︂
𝜓𝑆𝐷 − 𝜓𝑆𝑥

𝛾𝐷
𝛾𝐻

)︂
= 𝛾𝐷,

(C-28)
(𝑁𝑠 − 1)𝛾𝑃

𝜓𝑀

(︂
1 +

𝜓𝑆𝑥

𝜓𝑀

𝛾𝑃
𝛾𝐻

)︂−1

𝜓𝑆𝑛 = 𝛾𝐻 ,

(C-29)
(𝑁𝑠 − 1)𝛾𝑃

𝜓𝑀

(︂
1 +

𝜓𝑆𝑥

𝜓𝑀

𝛾𝑃
𝛾𝐻

)︂−1 (︂
𝜓𝑆𝑆 − 𝜓𝑆𝑥

𝛾𝑆
(𝑁𝑠 − 1)𝛾𝐻

)︂
= −𝛾𝑆,

(C-30)
(𝑁𝑠 − 1)𝛾𝑃

𝜓𝑀

(︂
1 +

𝜓𝑆𝑥

𝜓𝑀

𝛾𝑃
𝛾𝐻

)︂−1 (︂
𝜓𝑆𝑥

𝛾𝑃
𝛾𝐻

− 𝜓𝑀

)︂
= −𝛾𝑃 .

We obtain

(C-31) 𝜓𝑆𝑥 =
𝑁𝑠 − 2

2
𝜓𝑆𝑛, 𝛾𝐻 =

𝑁𝑠𝛾𝑃
2𝜓𝑀

𝜓𝑆𝑛, 𝛾𝑆 = −(𝑁𝑠 − 1)𝛾𝑃
𝜓𝑀

𝜓𝑆𝑆, 𝛾𝐷 =
𝛾𝑃
𝜓𝑀

𝜓𝑆𝐷.

Define the constants 𝐶𝐿 and 𝐶𝐺 by

(C-32)

𝐶𝐿 := − 𝜓𝑆𝑛

2𝜓𝑆𝑆

, 𝐶𝐺 :=
𝜓𝑆𝑛

2𝜓𝑀

𝑁𝑠(𝑟 + 𝛼𝐷)(𝑟 + 𝛼𝐺)
(︁

1 + (𝑁𝑠 − 1)𝜌𝑠

)︁
𝜎𝐺Ω1/2

(︁
(1 + (𝑁𝑠 − 1)𝜃𝑠) 𝜏

1/2
𝐻 + (𝑁𝑠 − 1)(1 − 𝜃𝑠)𝜏

1/2
𝐿

)︁ .
Substituting equation (C-31) into equation (C-24) yields the solution for optimal strategy.

(C-33) 𝑥*𝑛(𝑡) = 𝛾𝑆

(︁
𝐶𝐿 (𝐻𝑛(𝑡) −𝐻−𝑛(𝑡)) − 𝑆𝑛(𝑡)

)︁
.
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Define the average of traders’ expected growth rates �̄�(𝑡) by

(C-34) �̄�(𝑡) :=
1

𝑁𝑠

𝑁𝑠∑︁
𝑛=1

𝐺𝑛(𝑡),

Then, the equilibrium price is

(C-35) 𝑃 *(𝑡) =
𝐷(𝑡)

𝑟 + 𝛼𝐷

+
𝐶𝐺 �̄�(𝑡)

(𝑟 + 𝛼𝐷)(𝑟 + 𝛼𝐺)
.

Plugging (C-23) and (C-24) back into the Bellman equation and setting the constant

term and the coefficients of 𝑀𝑛, 𝑆𝑛 𝐷, 𝑆2
𝑛, 𝑆𝑛 �̂�𝑛, 𝑆𝑛 �̂�−𝑛, �̂�2

𝑛, �̂�2
−𝑛, and �̂�𝑛 �̂�−𝑛 to be

zero, we obtain nine equations. Using the first equation (C-31) to substitute 𝜓𝑆𝑛 for 𝜓𝑆𝑥,

there are in total nine equations in nine unknowns 𝛾𝑃 , 𝜓0, 𝜓𝑀 , 𝜓𝑆𝐷, 𝜓𝑆𝑆, 𝜓𝑆𝑛, 𝜓𝑛𝑛, 𝜓𝑥𝑥, and

𝜓𝑛𝑥.

By setting the constant term, coefficient of 𝑀 , and coefficient of 𝑆𝑛𝐷 to be zero, we

obtain

(C-36) 𝜓𝑀 = −𝑟𝐴, 𝜓𝑆𝐷 = − 𝑟𝐴

𝑟 + 𝛼𝐷

,

(C-37)

𝜓0 = 1 − ln 𝑟 +
1

𝑟

(︂
−𝛽 +

1

2
(1 + �̂�2)𝜓𝑛𝑛 +

1

2

(︂
�̂�2 +

1 + (𝑁𝑠 − 2)𝜌𝑠
𝑁𝑠 − 1

)︂
𝜓𝑥𝑥 + (�̂�2 + 𝜌𝑠)𝜓𝑛𝑥

)︂
.

In addition, by setting the coefficients of 𝑆2
𝑛, 𝑆𝑛 �̂�𝑛, 𝑆𝑛 �̂�−𝑛, �̂�

2
𝑛, �̂�

2
−𝑛 and �̂�𝑛 �̂�−𝑛 to be

zero, we obtain six polynomial equations in the six unknowns 𝛾𝑃 , 𝜓𝑆𝑆, 𝜓𝑆𝑛, 𝜓𝑛𝑛, 𝜓𝑥𝑥, and

𝜓𝑛𝑥. Defining the constants 𝑎1, 𝑎2, 𝑎3, and 𝑎4 by

𝑎1 := −(𝛼𝐺 + 𝜏) + (𝜏
1/2
𝐻 + �̂�𝜏

1/2
0 )

(︁(1 − 𝜃𝑠)(𝜏
1/2
𝐻 − 𝜏

1/2
𝐿 )

1 − 𝜌𝑠
+

(𝜃𝑠 − 𝜌𝑠)𝜏
1/2
𝐻 + (1 − 𝜃𝑠)𝜏

1/2
𝐿

(1 − 𝜌𝑠)(1 + (𝑁𝑠 − 1)𝜌𝑠)

)︁
,

𝑎2 := −(𝛼𝐺 + 𝜏) + (𝑁𝑠 − 1)
(︁
𝜃𝑠𝜏

1/2
𝐻 + (1 − 𝜃𝑠)𝜏

1/2
𝐿 + �̂�𝜏

1/2
0

)︁ (𝜃𝑠 − 𝜌𝑠)𝜏
1/2
𝐻 + (1 − 𝜃𝑠)𝜏

1/2
𝐿

(1 − 𝜌𝑠)(1 + (𝑁𝑠 − 1)𝜌𝑠)
,

𝑎3 := (𝜏
1/2
𝐻 + �̂�𝜏

1/2
0 )(𝑁𝑠 − 1)

(𝜃𝑠 − 𝜌𝑠)𝜏
1/2
𝐻 + (1 − 𝜃𝑠)𝜏

1/2
𝐿

(1 − 𝜌𝑠)(1 + (𝑁𝑠 − 1)𝜌𝑠)
,

𝑎4 :=
(︁
𝜃𝑠𝜏

1/2
𝐻 + (1 − 𝜃𝑠)𝜏

1/2
𝐿 + �̂�𝜏

1/2
0

)︁(︁(1 − 𝜃𝑠)(𝜏
1/2
𝐻 − 𝜏

1/2
𝐿 )

1 − 𝜌𝑠
+

(𝜃𝑠 − 𝜌𝑠)𝜏
1/2
𝐻 + (1 − 𝜃𝑠)𝜏

1/2
𝐿

(1 − 𝜌𝑠)(1 + (𝑁𝑠 − 1)𝜌𝑠)

)︁
,
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these six equations in six unknowns can be written

0 = − 1

2
𝑟𝜓𝑆𝑆 − 𝛾𝑃 (𝑁𝑠 − 1)

𝑟𝐴
𝜓2
𝑆𝑆 +

𝑟2𝐴2𝜎2
𝐷

2(𝑟 + 𝛼𝐷)2
+

1

2
(1 + �̂�2)𝜓2

𝑠𝑛+

+
1

2

(︂
�̂�2 +

1 + (𝑁𝑠 − 2)𝜌𝑠
𝑁𝑠 − 1

)︂
(𝑁𝑠 − 2)2

4
𝜓2
𝑆𝑛 −

𝑟𝐴

𝑟 + 𝛼𝐷

�̂�𝜎𝐷
𝑁𝑠

2
𝜓𝑆𝑛 +

𝑁𝑠 − 2

2
𝜓2
𝑆𝑛(�̂�2 + 𝜌𝑠)

(C-38)

0 = − 𝑟𝜓𝑆𝑛 −
𝑟𝐴

𝑟 + 𝛼𝐷

𝜎𝐺Ω1/2
(︁(1 − 𝜃𝑠)(𝜏

1/2
𝐻 − 𝜏

1/2
𝐿 )

1 − 𝜌𝑠
+

(𝜃𝑠 − 𝜌𝑠)𝜏
1/2
𝐻 + (1 − 𝜃𝑠)𝜏

1/2
𝐿

(1 − 𝜌𝑠)(1 + (𝑁𝑠 − 1)𝜌𝑠)

)︁
+ 𝑎1𝜓𝑆𝑛

−𝛾𝑃 (𝑁𝑠 − 1)

𝑟𝐴
𝜓𝑆𝑆𝜓𝑆𝑛 +

𝑁𝑠 − 2

2
𝑎4𝜓𝑆𝑛 + (1 + �̂�2)𝜓𝑛𝑛𝜓𝑆𝑛 +

𝑁𝑠 − 2

2

(︂
�̂�2 +

1 + (𝑁𝑠 − 2)𝜌𝑠
𝑁𝑠 − 1

)︂
𝜓𝑛𝑥𝜓𝑆𝑛

− 𝑟𝐴

𝑟 + 𝛼𝐷

�̂�𝜎𝐷(𝜓𝑛𝑛 + 𝜓𝑛𝑥) + (�̂�2 + 𝜌𝑠)

(︂
𝜓𝑛𝑥𝜓𝑆𝑛 +

𝑁𝑠 − 2

2
𝜓𝑛𝑛𝜓𝑆𝑛

)︂
,

(C-39)

0 = − 𝑟
𝑁𝑠 − 2

2
𝜓𝑆𝑛 +

𝛾𝑃 (𝑁𝑠 − 1)

𝑟𝐴
𝜓𝑆𝑆𝜓𝑆𝑛 −

𝑟𝐴

𝑟 + 𝛼𝐷

𝜎𝐺Ω1/2(𝑁𝑠 − 1)
(𝜃𝑠 − 𝜌𝑠)𝜏

1/2
𝐻 + (1 − 𝜃𝑠)𝜏

1/2
𝐿

(1 − 𝜌𝑠)(1 + (𝑁𝑠 − 1)𝜌𝑠)

+(𝑎3 +
𝑁𝑠 − 2

2
𝑎2)𝜓𝑆𝑛 + (1 + �̂�2)𝜓𝑆𝑛𝜓𝑛𝑥 +

𝑁𝑠 − 2

2

(︂
�̂�2 +

1 + (𝑁𝑠 − 2)𝜌𝑠
𝑁𝑠 − 1

)︂
𝜓𝑥𝑥𝜓𝑆𝑛

− 𝑟𝐴

𝑟 + 𝛼𝐷

�̂�𝜎𝐷(𝜓𝑥𝑥 + 𝜓𝑛𝑥) + (�̂�2 + 𝜌𝑠)

(︂
𝜓𝑥𝑥𝜓𝑆𝑛 +

𝑁𝑠 − 2

2
𝜓𝑛𝑥𝜓𝑆𝑛

)︂
,

(C-40)

0 = − 𝑟

2
𝜓𝑛𝑛 −

𝛾𝑃 (𝑁𝑠 − 1)

4𝑟𝐴
𝜓2
𝑆𝑛 + 𝑎1𝜓𝑛𝑛 + 𝑎4𝜓𝑛𝑥 +

1

2
(1 + �̂�2)𝜓2

𝑛𝑛

+
1

2

(︂
�̂�2 +

1 + (𝑁𝑠 − 2)𝜌𝑠
𝑁𝑠 − 1

)︂
𝜓2
𝑛𝑥 + (�̂�2 + 𝜌𝑠)𝜓𝑛𝑛𝜓𝑛𝑥,

(C-41)

0 = − 𝑟

2
𝜓𝑥𝑥 −

𝛾𝑃 (𝑁𝑠 − 1)

4𝑟𝐴
𝜓2
𝑆𝑛 + 𝑎2𝜓𝑥𝑥 + 𝑎3𝜓𝑛𝑥 +

1 + �̂�2

2
𝜓2
𝑛𝑥

+
1

2

(︂
�̂�2 +

1 + (𝑁𝑠 − 2)𝜌𝑠
𝑁𝑠 − 1

)︂
𝜓2
𝑥𝑥 + (�̂�2 + 𝜌𝑠)𝜓𝑥𝑥𝜓𝑛𝑥,

(C-42)
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0 = − 𝑟𝜓𝑛𝑥 +
𝛾𝑃 (𝑁𝑠 − 1)

2𝑟𝐴
𝜓2
𝑆𝑛 + 𝑎3𝜓𝑛𝑛 + 𝑎4𝜓𝑥𝑥 + (𝑎1 + 𝑎2)𝜓𝑛𝑥

+(1 + �̂�2)𝜓𝑛𝑛𝜓𝑛𝑥 +

(︂
�̂�2 +

1 + (𝑁𝑠 − 2)𝜌𝑠
𝑁𝑠 − 1

)︂
𝜓𝑥𝑥𝜓𝑛𝑥 + (�̂�2 + 𝜌𝑠)(𝜓𝑛𝑛𝜓𝑥𝑥 + 𝜓2

𝑛𝑥).
(C-43)

We solve equations (C-38)–(C-43) numerically. For a solution to the six polynomial

equations to define a stationary equilibrium, a second-order condition implying 𝛾𝑃 > 0, a

stationarity condition implying 𝛾𝑆 > 0, and a transversality condition requiring 𝑟 > 0.

The transversality condition for the value function 𝑉 (. . .) is

(C-44) lim
𝑇→+∞

E𝑛
𝑡

[︁
e−𝜌𝑠(𝑇−𝑡) 𝑉

(︁
𝑀𝑛(𝑇 ), 𝑆𝑛(𝑇 ), 𝐷(𝑇 ), �̂�𝑛(𝑇 ), �̂�−𝑛(𝑇 )

)︁]︁
= 0.

The transversality condition (C-44) is satisfied if 𝑟 > 0. Under the assumptions 𝛾𝑃 > 0 and

𝛾𝑆 > 0, analytical results imply 𝛾𝐷 > 0, 𝜓𝑀 < 0, 𝜓𝑆𝐷 < 0, and 𝜓𝑆𝑆 > 0. The numerical

results indicate that 𝛾𝐻 > 0, 𝜓𝑆𝑛 < 0, 𝜓𝑆𝑥 < 0, 𝜓𝑛𝑛 < 0, 𝜓𝑥𝑥 < 0 and the sign of 𝜓𝑛𝑥 is

intuitively and numerically ambiguous.

C.3. Proof of Corollary 1

The consistency condition in equation (22) implies that

(C-45) 𝜌𝑠 − 𝜌 =
(𝑁𝑠 −𝑁)(1 − 𝜌)

𝑁(𝑁𝑠 − 1)
.

Equation (C-45) implies that, if 𝑁𝑠 < 𝑁 , then 𝜌𝑠 < 𝜌.

𝐶𝑜𝑣(𝑑𝐼𝑛(𝑡), 𝑑𝑃 (𝑡)) =𝐶𝑜𝑣(𝜌1/2𝑑𝑍(𝑡) + (1 − 𝜌)1/2𝑑𝐵𝑛(𝑡), 𝜌1/2𝑑𝑍(𝑡) + (1 − 𝜌)1/2
1

𝑁

𝑁∑︁
𝑚=1

𝑑𝐵𝑚(𝑡))

=𝜌+
1

𝑁
(1 − 𝜌).

(C-46)

𝐶𝑜𝑣(𝑑𝐼𝑛(𝑡), 𝑑𝑃𝑠(𝑡)) =𝐶𝑜𝑣(𝜌1/2𝑠 𝑑𝑍(𝑡) + (1 − 𝜌𝑠)
1/2𝑑𝐵𝑛(𝑡), 𝜌1/2𝑠 𝑑𝑍(𝑡) + (1 − 𝜌𝑠)

1/2 1

𝑁𝑠

𝑁𝑠∑︁
𝑚=1

𝑑𝐵𝑚(𝑡))

=𝜌𝑠 +
1

𝑁𝑠

(1 − 𝜌𝑠).

(C-47)
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Therefore, if the consistency condition (22) is satisfied, then for each trader, the correlation

coefficient between his private signal and the actual price is consistent with the correlation

between his private signal and his “subjective” price.


