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Systemic risk and its determinants: Fresh evidence 

from the Australian banking sector 

 

Abstract 

This study analyzes systemic risk in the Australian banking sector by applying a delta conditional 

value-at-risk approach (ΔCoVaR). While the literature mostly applies quantile regression 

framework to measure ΔCoVaR, we rely on a novel copula-based methodology. Additionally, we 

examine time-frequency dynamics of ΔCoVaR to explore if systemic connectedness between an 

individual bank and the entire financial system is asymmetric across frequencies. We also explore 

the determinants of Australian banks’ systemic risk contribution in a panel setting. We find several 

interesting results. First, despite the introduction of deposit insurance scheme and more stringent 

capital requirements, systemic risk after the global financial crisis in 2008 is typically higher than 

in the pre-crisis period. Second, short-term ΔCoVaR is significantly higher than the medium- and 

long-term ΔCoVaR, particularly during the financial crisis and for major banks. Finally, we find 

that idiosyncratic bank characteristics and market-wide variables significantly describe the cross-

sectional and time-series variation in systemic risk, and their explanatory power varies across 

frequencies. 
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1. Introduction 

 The risk assessment of banking sector has historically been carried out based on balance 

sheet components of individual banks, overlooking their heterogeneity and their importance to the 

overall financial system. That is, the traditional risk management approach has focused on 

individual bank’s exposure irrespective of the linkages between the banks themselves. However, 

in case a bank fails to pay out its liabilities, losses can be spilled over to other banks due to their 

interbank exposures to the defaulting bank. Consequently, simultaneous losses of several banks 

may negatively affect the economy as a whole. This potential spillover from a distressed individual 

bank to the whole banking system (the so-called systemic risk) has been a concern in the recent 

years. The global financial crisis (GFC) has established that shocks pertaining to liquidity, 

insolvency, and losses of an individual bank can quickly proliferate to other banks. Accordingly, 

regulators have taken several ad-hoc steps to control systemic risk.1 Therefore, from a regulatory 

and academic standpoint, it is important to estimate the systemic risk contribution of an individual 

bank to identify its systemic importance. Findings from such analysis can help regulators impose 

regulatory impediments to safeguard the overall financial system.  

 This paper examines systemic risk in the Australian banking sector, and it explains the 

degree of systemic risk contribution in terms of idiosyncratic bank characteristics and market-wide 

variables. The choice of Australian banking sector is motivated by several reasons. First, as 

opposed to the majority of leading banks in developed countries, Australian banks had a relative 

good performance in the GFC, which is attributed to Australian Prudential Regulatory Authority’s 

(APRA) proactive measures such as mandatory stress test on housing portfolio in 2003 and 2004 

                                                           
1 For example, a systemically important bank is subject to a “crisis responsibility fee” (The White House Office of the 

Press, 2010), a systemic risk levy (Claessens et al., 2010), a capital surcharge (Basel Committee on Banking 

Supervision, 2013), a Pigouvian tax (Acharya et al., 2013, 2017), and more stringent regulation (Dewatripont et al., 

2010) in different countries and different contexts.  
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and raising capital requirements on housing loans in 2004 (Reserve Bank of Australia, 2009). 

Nevertheless, the performance of the aggregate banking system and financial soundness of 

individual banks may not necessarily reveal the systemic risk profile of the banks (Pais and Stork, 

2011). Thus, it is interesting to assess the systemic risk of the well-performed Australian banks. 

Second, unlike the banking sectors in the US and many European economies, the Australian 

banking sector is highly concentrated and interconnected by a small number of large banks. The 

largest four banks hold about 80% of the total banking assets (that are identified later in this 

Section). Third, while special housing finance institutions typically perform real estate mortgage 

lending in most of the developed economies (Berglund and Mäkinen, 2019), Australian banks’ 

lending portfolio is dominated by residential mortgage loan (D’Hulster, 2017). Additionally, in 

Australia, total household debt is about twice of the total disposable income, which is relatively 

higher than that of many industrialized nations. Fourth, the Australian banks are heavily reliant on 

off-shore sources for wholesale funding. The second, third, and fourth reasons contribute to the 

vulnerability of the systemic risk (Brunnermeier, 2009).  

 Given the significant evidence of collapse of the whole financial system in response to a 

collapse of several financial institutions (for example, Lehman Brothers) during the GFC, 

academic researchers examine extreme value dependence between a distressed financial institution 

and the overall financial system. To this vain, several systemic risk measures have been used, such 

as the distressed insurance premium (Huang et al., 2012), the systemicness (Greenwood et al., 

2015), the conditional value-at-risk (CoVaR) (Adrian and Brunnermeier, 2016), the systemic risk 

index (Brownlees and Engle, 2016), and the systemic expected shortfall (Acharya et al., 2017),. 

 Our study builds on the most extensively used measure of systemic risk, the ΔCoVaR 

(Adrian and Brunnermeier, 2016). The CoVaR measures the value-at-risk (VaR) of the overall 
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financial system, conditional on a VaR of an individual institution. The ΔCoVaR, a measure of 

risk contribution of a bank to the overall financial system, is the difference between the value of 

the CoVaR conditional on an individual bank in distress and the value of the CoVaR conditional 

on a bank being in a median state. The CoVaR is a complete measure of risk (Adrian and 

Brunnermeier, 2016), and it does not depend on ex ante modelling of conditional distributions of 

returns. 

This paper adds to the literature both methodologically and contextually. While the original 

CoVaR methodology of Adrian and Brunnermeier (2016) is based on semiparametric quantile 

regression framework, this paper provides a methodological contribution by using a novel copula-

based CoVaR method. In general, copula approach is advantageous as it enables estimation of the 

entire joint distribution even in the presence of fat tails and heteroskedasticity (Adrian and 

Brunnermeier, 2016). In particular, we use a broad range of copula families that models different 

forms of dependence or extreme co-movements between an individual financial institution and the 

corresponding financial system as a whole. Additionally, our modelling approach allows us to 

segregate the dependence structure (that is associated with systemic risk) from marginal 

distributions (which is associated with tail risk). This provides estimation flexibility and 

contributes to mitigate misspecification bias associated with measuring systemic risk.  

The second contribution of this paper is to examine systemic risk in different frequencies. 

While the previous studies mostly concentrate on estimating systemic risk for a particular data 

frequency, we argue that it is important to analyze the frequency dynamics of systemic risk. The 

main economic argument behind the expectation that systemic risk may vary across different 

frequencies is based on the notion that investors operate in different investment horizons 

(represented by frequencies), and it is essentially a manifestation of their preferences for a 
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particular frequency. Investors with heterogenous preferences for investment horizons may 

respond differently to a market/economic shock. This phenomenon may create asymmetric 

systemic risk in the short, medium, and long run. We empirically verify this conjecture in this 

paper. 

The third contribution is to explain systemic risk with respect to idiosyncratic bank 

characteristics and market-wide variables. Although Avkiran (2018) and Australian Prudential 

Regulation Authority (2013) analyze Australian banks’ systemic risk based on criteria set by Basel 

Committee for Banking Supervision (such as size, non-substitutability, and complexity), none of 

the previous studies relate bank-specific characteristics to their systemic risk contribution in the 

Australian context. The extant literature on this issue focusing banking sectors of other countries 

is also inclusive. For instance, although Brunnermeier et al. (2012), Beltratti and Stulz (2012), 

López-Espinosa et al. (2015), and Karimalis and Nomikos (2018) show that bank size and leverage 

positively contribute to systemic risk, Weiß et al. (2014) demonstrate that bank characteristics such 

as size, leverage, and non-interest income are not persistent determinants of systemic risk; yet, 

characteristics of regulatory regime are the leading drivers of systemic risk. Therefore, we shed 

new light in this regard. In particular, we derive a semiannual measure of ΔCoVaR and regress it 

on bank characteristics (size, leverage, liquidity, profitability, capital adequacy, and funding 

structure) and on market-wide variables (Gross Domestic Product (GDP) growth, cash rate, 

exchange rate change, and housing price growth) in a panel setting.  

The final contribution of this paper is the choice of Australian banking sector. While a large 

literature focuses on systemic risk of the US and European banks (see e.g., López-Espinosa et al., 

2015; Black et al., 2016; Acharya et al., 2017; Karimalis and Nomikos, 2018), the Australian 

banking sector is less explored. Additionally, only a few studies examine systemic risk 
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contribution of four large Australian banks (Avkiran, 2018). Therefore, systemic risk 

characteristics of other banks remain mostly unknown, despite their increasing presence in the 

national market. We contribute by examining systemic risk of four major banks (Australia and 

New Zealand Banking Group, Commonwealth Bank of Australia, National Australia Bank, and 

Westpac Banking Corporation), as well as three large regional banks (Auswide Bank Limited, 

Bendigo and Adelaide Bank, and Bank of Queensland), thereby providing a comprehensive picture 

of the systemic risk in the Australian banking sector. 

 We report several key findings in this paper. First, despite increasing presence of the 

regional banks in the Australian economy, we find that the major Australian banks are still 

systemically more important than the regional banks. Regional banks, however, exhibit high 

downside risk (value-at-risk) potentially due to their concentrated nature of business. Second, 

systemic risk in the crisis period is significantly higher than in the pre-crisis period that may be 

attributed to investors’ underestimation of bank risk and capital mismeasurement in the pre-crisis 

period, which was later adjusted in the crisis period. Although the Australian government 

introduced deposit insurance in early 2008 and significantly increased regulatory capital 

requirement, systemic risk in the post-crisis period is typically higher compared to that in the pre-

crisis period. This result implies a shift in the investors’ expectation about overall bank risk and 

reduction in too-big-to-fail subsidy particularly after the GFC. Third, systemic risk in the 

Australian banking system differs across frequencies. Although short-term systemic risk is 

generally higher than that in medium and long term, this result is prevailing during the crisis period. 

This finding suggests that systemic risk created in a crisis period is attributed to investors’ rapid 

processing of fundamental and publicly available information, and it mostly affects short-term 

cyclical behavior of the financial system. Finally, we find that idiosyncratic bank characteristics 
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such as size, leverage, liquidity, and capital adequacy and market-wide variables like GDP growth 

and cash rate significantly explain the Australian banks’ systemic risk contribution. Nonetheless, 

systemic risk across frequencies is attributed to a different set of explanatory variables. 

 The rest of the paper advances as follows. Section 2 presents a related literature review. 

Section 3 highlights key characteristics of the Australian banking sector related to its vulnerability 

to systemic risk. Section 4 outlines the methodology used in the paper, and Section 5 describes the 

data. Section 6 presents the empirical results and policy implications. Finally, Section 7 concludes 

the paper. 

2. Literature review 

 The literature pertaining to systemic risk in banking sector predominantly focuses on three 

aspects. First, the channels to which risk spillover takes place from an individual bank to other 

banks and to the financial system as a whole. For instance, banks’ exposure to interbank market 

and to Euromarket is considered to be one channel (Allen and Gale, 2000). Since banks use both 

markets to manage their liquidity risk, any bank’s failure can negatively affect other banks. Furfine 

(2003) and Upper and Worms (2004) empirically examine this issue. Risk spillover in banking 

sector can also be attributed to asymmetric information and economic agents’ failure to identify 

good and bad banks (Pais and Stork, 2011). Then, a shock in a bank helps predict shocks in other 

banks, inducing risk contagion (since information asymmetry in banking sector is higher than other 

sectors because (i) banks are specialized in financing illiquid (non-marketable) assets that are 

associated with information frictions, and (ii) the quality of banks’ loan portfolio is not directly 

observable). Furthermore, banks offer relatively homogenous products; they are collectively 

sensitive to same type of risk, and they are subject to the same macroeconomic drivers. Therefore, 
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a positive return correlation between banks’ loan portfolio induces contagion. Hasman and 

Samartín (2008) and De Vries (2005) support this conjecture. 

 The second aspect covered in the relevant literature is approaches that measure systemic 

risk together with their application to banking sectors across the globe. For instance, Lehar (2005) 

and Gray et al. (2019) measure systemic risk based on contingent claims of financial institution 

assets. These papers find that correlation across banks has increased over time. Additionally, banks 

that are large, more profitable, and complying regulatory capital requirements exhibit less systemic 

risk. Huang et al. (2009) propose an economic framework that measures systemic risk by the price 

of insurance against financial distress. Insurance premium is calculated based on ex ante individual 

banks’ default probabilities and predicted correlations between asset returns. Billio et al. (2012) 

measure an individual institution’s connectedness with overall financial system, using 

unconditional correlation from Granger-causality network and principal component analysis. The 

authors find that among different financial institutions (e.g., hedge funds, banks, and insurance 

companies), banks play the most important role in propagating shocks. Brownlees and Engle 

(2016) estimate systemic risk based on individual financial institution’s size, leverage, and 

marginal expected capital shortfall. The authors provide evidence that more volatile and less 

diversified banks are greater contributors to systemic risk.  

Acharya et al. (2012) and Acharya et al. (2017) developed the expected capital shortfall 

(ECS) and the systemic expected shortfall (SES), respectively, to measure systemic risk. ECS 

depicts a financial institution’s capital requirement in a potential distressed event, and SES 

illustrates a tendency of a financial institution to be undercapitalized when the entire system is 

undercapitalized. The authors show an increase in systemic risk for the US banks during the GFC.  

To measure extreme-tail dependence of return distributions of a financial institution and the whole 
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financial system, Adrian and Brunnermeier (2016) proposed the delta conditional value-at-risk 

(ΔCoVaR), the difference in the VaR of the financial system conditional on an i-th institution being 

in distress and the VaR of the financial system conditional on an i-th institution being in median 

state. By applying the ΔCoVaR, the authors find that banks’ leverage, size, and maturity mismatch 

help predict future systemic risk of US banks.  

 The third relevant strand of the literature focuses on idiosyncratic bank characteristics (e.g., 

bank’s size, leverage, loan portfolio, and profitability) as determinants of a financial institution’s 

contribution to systemic risk. As for size, a large bank can increase its profits and diversify its 

portfolio more efficiently, reducing systemic risk since a more profitable and diversified bank is 

less sensitive to macroeconomic and liquidity shocks (Boyd et al., 2004). Yet, in line with the “too-

big-to-fail” conjecture, large banks may take excessive risk that can increase systemic risk. 

Regarding the leverage of a bank, a high leverage can reduce default risk by improving liquidity 

and loan quality (Diamond and Rajan, 2001). However, an increase in short-term leverage can 

enlarge systemic risk. As for the loan portfolio, a large loan portfolio contributes to the 

vulnerability of a bank by increasing creditor’s default rates. Conversely, a small loan portfolio 

can be highly exposed to credit spread fluctuations. As regards profitability, a high operating profit 

margin can reduce systemic risk since it shields banks from defaulting. Nevertheless, a high 

operating profit margin can also be an indication of banks’ high engagement in risky non-lending 

activities (e.g., investment banking and securities trading), which can increase the probability of 

default and systemic risk (Weiß et al., 2014). Certain studies in the literature also consider VaR, 

market-to-book value, beta, and equity return volatility as bank-specific determinants of systemic 

risk (e.g., Adrian and Brunnermeier, 2016; Teply and Kvapilikova, 2017). 
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Certain empirical studies explore the validity of the theoretical arguments presented above, 

and they come up with diverse results. In general, bank size and leverage have a significant positive 

effect on banks’ contribution to systemic risk (Brunnermeier et al., 2012; Beltratti and Stulz, 2012; 

López-Espinosa et al., 2015; Laeven et al., 2016; Karimalis and Nomikos, 2018; Varotto and Zhao, 

2018). Black et al. (2016) show that banks with more liquid assets and traditional lending portfolios 

do not contribute to systemic risk. The authors, however, find that banks with lending portfolios 

predominantly financed by non-deposit instruments and banks with higher Basel capital ratio 

contribute to systemic risk. Nevertheless, Laeven et al. (2016) provide evidence that systemic risk 

is negatively related to banks’ capital. The authors further report that the profitability of a bank 

does not significantly affect systemic risk. In addition, Varotto and Zhao (2018) find a significant 

inverse relationship between bank profitability and systemic risk. Karimalis and Nomikos (2018) 

demonstrate that funding liquidity and market volatility negatively affect systemic risk, 

particularly in a quarterly horizon. In contrast to these studies, Weiß et al. (2014) contend that the 

characteristics of regulatory regime rather than the bank characteristics (such as size, leverage, and 

quality of bank credit portfolio) are the main drivers of systemic risk.     

 Although a large strand of the literature focuses on systemic risk in the US (Giesecke and 

Kim, 2011; Girardi and Ergün, 2013; Drakos and Kouretas, 2015; López-Espinosa et al., 2015; 

Adrian and Brunnermeier, 2016; Acharya et al., 2017) and in the European banking sector (Bernal 

et al., 2014; Drakos and Kouretas, 2015; Black et al., 2016; Karimalis and Nomikos, 2018), only 

a handful of studies examine systemic risk in the Australian banking sector. For example, Pais and 

Stork (2011) report that Australian bank stocks exhibit a high risk of extreme spillovers and 

interdependencies, and this phenomenon has increased markedly since the advent of the GFC. 

Akhter and Daly (2017) show that Australian banks are contagious to extreme shocks originating 
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in global systemically important banks in the US, Europe, and Japan. Similarly, Avkiran (2018) 

shows that the major Australian banks are net liquidity buyers that account for about 80% of the 

domestic systemic risk in banking sector. Anufriev and Panchenko (2015) and Dungey et al. (2017) 

provide evidence of a strong link among the major four Australian banks and their connection with 

the real economy. Bollen et al. (2015) report that systemic risk of the Australia’s major banks 

increased initially in response to the GFC and to subsequent stock market downturn, but it 

decreased with the introduction of the Deposit and Wholesale Funding Guarantee scheme in 

October 2008. Apart from the above-mentioned papers, Australian Prudential Regulation 

Authority (2013), Reserve Bank of Australia (2014), and IMF (2019) identify the four major 

Australian banks as systemically important ones. They conclude that although Australian banks’ 

capital levels have been enhanced and funding risk has been decreased, these banks are vulnerable 

to common shocks, particularly with respect to homogenous business models followed by the 

major banks, to their reliance on offshore sources for wholesale funding, and to exposure to real 

estate sector.  

 We find several gaps by reviewing the literature. First, empirical evidence on systemic risk 

in the Australian banking sector is mostly based on analyses of financial statement information 

(Avkiran, 2018), on network approach (Anufriev and Panchenko, 2015; Dungey et al., 2017), and 

on augmented market model (Bollen et al., 2015). None of these approaches explore tail 

dependence or extreme comovements, which have become relevant after the GFC. Besides, the 

existing literature predominantly focuses on four major Australian banks. Thus, systemic risk 

characteristics of other banks, which have an increasing presence in the national market, remain 

largely unexplored. Further, none of these studies relate the degree of systemic risk to idiosyncratic 



13 
 

characteristics of Australian banks. Therefore, this study aims at fulfilling these gaps in the 

literature.  

3. The Australian banking sector 

 The Australian banking sector (ABS) is the greatest contributor to the financial system of 

Australia, with several key characteristics. First, the ABS is dominated by a small number of large 

banks. Although the four major banks constitute just 2.7% of the authorized deposit-taking 

institutions (ADIs), they hold about three-fourth of the total assets held by ADIs. This statistic 

highlights the systemic importance of these banks and their potential contribution to the 

vulnerability of the aggregate financial system. In addition, total assets held by the banks is about 

two-and-half times the value of the Australian nominal GDP. This fact shows the potential of 

sovereigns’ large contingent liability, and it raises a concern about the Australian government’s 

ability to bailout the banks in a crisis with possible losses to be borne by creditors, depositors, and 

tax payers (Demirgüç-Kunt and Huizinga, 2013).  

Besides, residential mortgage loan constitutes about half of the lending of the Australian 

commercial banks. This rate is higher compared with that of comparable banks in the US, Canada, 

and European Union countries (D’Hulster, 2017). Additionally, mortgage loans include a high 

proportion (about 30%) of potentially high-risk interest-only mortgages, and mortgage loan 

customers appear to be increasingly levered. Furthermore, total household debt is about 200% of 

the disposable income in Australia, which is relatively higher compared with other developed 

economies. These facts also underscore the potential vulnerability of the Australian banking sector. 

Although household debt is backed by significant physical real estate and pension funds, a decline 

in real estate price can have a negative impact on the aggregate banking industry due to illiquidity 

associated with the real estate market. Finally, although wholesale funding has recently declined 
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in Australia, it still remains about 36% of the total (non-equity) liabilities. The banks are highly 

reliant on off-shore sources (about two-third) for the wholesale funding due to competitive pricing 

offered by them, making the Australian banks sensitive to vulnerabilities in the global financial 

system. 

 Table 1 reports certain financial soundness indicators of the ABS in 2007 and in 2018 that 

illustrate the changes in financial soundness since the advent of the GFC. We focus on capital 

adequacy, liquidity, asset quality, and profitability. We measure capital adequacy using total 

capital adequacy ratio (CAR) and Tier 1 risk-based capital ratio (RCR1). CAR is the ratio of total 

capital available to risk-weighted credit exposures of banks, and RCR1 is the proportion of Tier 1 

capital (equity capital and disclosed reserves) to total risk-weighted assets. Against the threshold 

of 8% and 4.5% for CAR and RCR1, respectively, Table 1 shows that Australian banks’ capital 

cushion has remained strong, and it has particularly strengthened since 2007 to deal with the 

financial crisis. For instance, for all the four major banks, CAR (RCR1) was between 9% to 10% 

(6% to 7%) in 2007, which improved between 14% to 15% (12% to 13%) in 2018. Nonetheless, 

in general, the regional banks’ capital adequacy is relatively lower compared with that of the major 

banks, since all banks are required to maintain an additional capital conservation buffer of 2.5%, 

while this requirement is 3.5% for the major banks. 

We assess liquidity through loan to deposit ratio (LDR) and savings deposit to total deposit 

ratio (SDTDR). An LDR greater than 100% for the Australian banks (except for BAB in 2007) 

indicates that, in addition to their own deposits, they rely on borrowed fund to make loans. LDR 

has declined substantially from 2007 to 2018 (apart from BAB), indicating that banks’ liquidity to 

face unforeseen funding requirements or financial crisis has improved. This is also consistent with 

their safely measure taken against the financial crisis. As for ABL, its LDR was substantially 
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higher than that of other banks in 2007, implying ABL’s lower ability to cover loan losses and a 

high probability of default. Nevertheless, this situation improved remarkably in 2018. Since 

SDTDR reveals the reliance of banks on deposit funding, a significant increase in this ratio for 

most of the banks from 2007 to 2018 underscores that Australian banks are increasingly relying 

on savings deposits and their reliance on wholesale funding is gradually declining. This implies a 

decrease in the exposure of banks to external liquidity crunches. In 2018, ANZ had the lowest 

LDR and highest SDTDR among the four major banks, showing the bank’s financial soundness 

compared with its competitors.  

We evaluate the asset quality of the banks using loan loss provision to total loan (LLP) and 

the ratio of non-performing loan to total loan (NPL). These ratios are lower than 1% for all the 

four major banks, indicating that banks’ expectation of potential loan losses and actual non-

payment of loan on a specific period is extremely low compared with the total lending made by 

the banks. Although the NPL ratio slightly increased in 2018 compared with that in 2007, this ratio 

is still less than 0.50% for these four banks, implying their efficiency in judging borrowers’ 

creditworthiness and collection of loan on a timely manner. Overall, the NPL ratio for the regional 

banks is relatively higher compared with that of the major banks. Finally, the banks’ profitability 

(return on equity [ROE]) declined substantially from 2007 to 2018, which may be attributed to an 

increase in the capital of the banks and to a decrease in the exposure of banks to non-lending 

activities. In 2018, ROE ranged between 11% to 14% for the four major banks, which is still higher 

compared with some of the Australian banks’ international counterparts in Canada, Sweden, 

Switzerland, and the UK (Royal Commission, 2018). This finding suggests that Australian banks 

have been profitable historically. Nonetheless, profitability of the regional banks is relatively lower 

in comparison with that of the major banks.  
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[INSERT TABLE 1 HERE] 

4. Methodology 

This section describes the underlying framework used to investigate the systemic risk in 

the Australian banking sector. To do so, we first evaluate the dynamic dependence structure 

between an individual bank and the aggregate banking index by using different time-varying 

copulas. Further, we employ CoVaR and ΔCoVaR to quantify the risk spillover effects in the 

Australian banking industry. Finally, we implement wavelet-based CoVaR and ΔCoVaR measures 

to examine the variations in spillover effects across different frequencies (short, medium, and long 

run). 

4.1. Marginal distribution model 

The estimation of marginal distribution model is fundamental for estimating copulas. We 

select the best-fitted model among various GARCH-type specifications (ARMA(m,n)-

GARCH(p,q), ARMA(m,n)-GJR-GARCH(p,q), and ARMA(m,n)-EGARCH(p,q)). We select the 

model that minimizes the Akaike criterion (AIC). In addition, the EGARCH captures the 

asymmetric effects of negative and positive shocks on conditional volatility of the returns (Nelson, 

1991). We can specify a marginal distribution model for the bank stock return series 𝑋𝑡 as: 

 
𝑋𝑡 = μ + ∑ ϕ𝑖𝑋𝑡−𝑖

𝑚

𝑖=1

+ 𝜀𝑡 + ∑ θ𝑗ε𝑡−𝑗

𝑛

𝑗=1

, 

 

(1) 

where μ is a vector of constants, and ϕ𝑖 and θ𝑗 are the AR and the MA components with 𝑚 and 𝑛 

lags, respectively. We assume that the white noise process ε𝑡 has a t-Student distribution with 𝑣 

degrees of freedom given as:  



17 
 

 

√
𝑣

σ𝑡
2(𝑣 − 2)

ε𝑡  
i.i.d.

~ 𝑡𝑣, 

 

(2) 

and the EGARCH(p,q) model with conditional variance, σ𝑡
2, is represented by the following 

equation: 

 

log 𝜎𝑡
2 = 𝜅 +  ∑ 𝛽𝑖log 𝜎𝑡−𝑖

2

𝑝

𝑖=1

+  ∑ 𝛼𝑗

𝑞

𝑗=1

(|�̅�𝑡−𝑗| − 𝐸|�̅�𝑡−𝑗|) + ∑ 𝜉𝑗(�̅�𝑡−𝑗)

𝑞

𝑗=1

, 

 

(3) 

where �̅�𝑡−𝑗 = 𝜀𝑡−𝑗𝜎𝑡−𝑗
−1 , 𝛼𝑗 and 𝛽𝑖 are ARCH and GARCH parameters, respectively, 𝜅 is the 

intercept of the conditional variance equation, and 𝜉𝑗 captures the leverage effect in the underlying 

series. For 𝜉𝑗 < 0, a negative has a greater impact on the future values of conditional variance than 

a positive shock of equal absolute magnitude. Therefore, an ARMA(m,n)-EGARCH(p,q) model 

is appropriate as investors tend to react differently to the positive and negative shocks in stock 

returns, since the ARMA(m,n)-EGARCH(p,q) framework captures these asymmetric dynamics in 

the return series.  

4.2. Time-varying copula 

 To assess the time-varying dependence between individual Australian banks and the 

aggregate banking sector, we employ different time-varying copula models (Gaussian, t-Student, 

Clayton, and SJC copula). They are flexible and effective in capturing and modelling dependence 

(Bekiros et al., 2017). An important advantage of copulas is that they separate the selection of 

univariate marginal distribution models from the multivariate dependence structure, simplifying 

the choice of marginal models and the identification of appropriate copula functions easier. 
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Let 𝑋𝑡 and 𝑌𝑡 be the stock returns of an individual Australia bank and the aggregate banking 

sector, respectively, with marginal distribution functions 𝐹𝑋(𝑥) and 𝐹𝑌(𝑦), respectively, and a 

corresponding joint distribution function 𝐹𝑋𝑌(𝑥, 𝑦). Then, based on Sklar (1959)’s Theorem, we 

may estimate 𝐹𝑋𝑌(𝑥, 𝑦) as a function of 𝐹𝑋(𝑥), 𝐹𝑌(𝑦), and a copula function as follows: 

 𝐹𝑋𝑌(𝑥, 𝑦) = 𝐶(𝐹𝑋(𝑥), 𝐹𝑌(𝑦)), (4) 

where 𝐶(∙,∙) is uniquely determined for 𝐹𝑋(𝑥) and 𝐹𝑌(𝑦) continuous such that  𝐶(𝑢1, 𝑢2) =

𝐹𝑋𝑌(𝐹𝑋
−1(𝑢1), 𝐹𝑌

−1(𝑢2)) is a bivariate copula function, with 𝑢1 =  𝐹𝑋(𝑥) and 𝑢2 = 𝐹𝑌(𝑦) are 

random variables following a uniform distribution on (0,1)2. Then, we can estimate the joint 

density, 𝑓𝑋𝑌(𝑥, 𝑦), as the product between copula density, 𝑐(𝑢1, 𝑢2), and the univariate marginal 

distributions of an individual bank and the aggregate banking sector, 𝑓𝑋(𝑥) and 𝑓𝑌(𝑦), given as: 

 𝑓𝑋𝑌(𝑥, 𝑦) = 𝑐(𝑢1, 𝑢2)𝑓𝑋(𝑥)𝑓𝑌(𝑦), (5) 

where 𝑐(𝑢1, 𝑢2) =
𝜕2𝐶(𝑢1,𝑢2)

𝜕𝑢1𝜕𝑢2
 is the dependence structure of the return series. A copula may be 

defined as a multivariate function with empirical uniform distribution functions, representing the 

dependence structure among two or more continuous random variables. For n bank stock return 

series, the generalized form of a Gaussian copula is given by: 

𝐶(𝑢1, … , 𝑢𝑛) =  𝜙𝜌(𝜙−1(𝑢1), … , 𝜙−1(𝑢𝑛))

=  ∫ …
𝜙−1(𝑢1)

−∞

 ∫
1

2(𝜋)
𝑛

2⁄ |𝜌|
1

2⁄

𝜙−1(𝑢𝑛)

−∞

 exp (−
1

2
 𝑧𝑇 𝜌−1𝑧)  𝑑𝑧1, … , 𝑑𝑧𝑛, 

 

(6) 
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where 𝜙𝜌 is the multivariate Gaussian distribution function, 𝜌 is the correlation matrix, 𝑢𝑖 is the 

marginal distribution function of stock bank return 𝑖, and 𝜙−1 is the inverse of univariate Gaussian 

distribution. We also employ the t-Student copula as follows: 

𝐶(𝑢1, … , 𝑢𝑛) =  𝑡𝜌,𝑣(𝑡𝑣
−1(𝑢1), … , 𝑡𝑣

−1(𝑢𝑛)) 

=  ∫ …
𝑡−1(𝑢1)

−∞

 ∫
1

Γ (
𝑣
2

) (𝑣𝜋)
𝑛

2⁄ |𝜌|
1

2⁄

𝑡−1(𝑢𝑛)

−∞

(1 +
1

𝑣
 𝑧𝑇 𝜌−1𝑧)

−
𝑣+𝑛

2
 𝑑𝑧1, … , 𝑑𝑧𝑛, 

 

(7) 

where 𝑡𝜌,𝑣 is the multivariate t-Student distribution, 𝜌 is the correlation matrix, and 𝑣 is the degrees 

of freedom parameter. the t-Student copula captures the variations in the tails of the distribution, 

and it accounts for possibly joint extreme movements that characterize the financial return series. 

The t-Student distribution converges to a Gaussian distribution as 𝑣 → ∞.  

Following Patton (2006), we implement the Clayton copula, formulated as follows: 

 
𝐶𝑡

𝐶(𝑢1, 𝑢2;  𝜏𝑡) = (𝑢1

−𝜏𝑡 + 𝑢2
−𝜏𝑡 − 1)

−
1
𝜏𝑡 ,   𝜏𝑡 ∈ (0, ∞), 

 

(8) 

where 𝜏𝑡 follows the process 

 𝜏𝑡 =  Λ (𝜔 + 𝛽 𝜏𝑡−1 + 𝛼 ∙
1

10
∑ |𝑢1,𝑡−𝑖 − 𝑢2,𝑡−𝑖|

10
𝑖=1 ), (9) 

where Λ(z) = (1 + 𝑒−𝑧)−1 is the logistic function that guarantees that 𝜏𝑡 ∈ (0,1) for all t. To 

consider asymmetric tail dependence between the underlying return series, we apply the 

Symmetrized Joe-Clayton (SJC) (Patton, 2006), which is specified as: 
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𝐶𝑆𝐽𝐶(𝑢1, 𝑢2|𝜏𝑈, 𝜏𝐿) = 0.5[𝐶𝐽𝐶(𝑢1, 𝑢2|𝜏𝑈, 𝜏𝐿) + 𝐶𝐽𝐶(1 − 𝑢1,1 − 𝑢2|𝜏𝑈, 𝜏𝐿) + 𝑢1 + 𝑢2 − 1], (10) 

where 𝐶𝐽𝐶(𝑢1, 𝑢2|𝜏𝑈, 𝜏𝐿) = 1 − {1 − [{1 − (1 − 𝑢1)𝜅}−𝛾 + {1 − (1 − 𝑢2)𝜅}−𝛾 − 1]
−

1

𝛾}

1

𝜅

 is the 

Joe-Clayton copula with 𝜅 = 1/ log2(2 − 𝜏𝑈), 𝛾 =  −1/ log2(𝜏𝐿), 𝜏𝑈 ∈ (0, 1), and 𝜏𝐿 ∈ (0, 1). 

The parameters 𝜏𝑈  and 𝜏𝐿 assess the dependence at the upper and lower tails of the distribution, 

respectively. For 𝜏𝑈 =  𝜏𝐿, the SJC dependence structure is symmetric, otherwise it is asymmetric.  

 Patton (2006) defined the evolution of dependence parameters of the SJC copula as: 

 𝜏𝑗,𝑡 =  Λ (𝜔𝑗 + 𝛽𝑗  𝜏𝑗,𝑡−1 + 𝛼𝑗 ∙
1

10
∑ |𝑢1,𝑡−𝑖 − 𝑢2,𝑡−𝑖|

10
𝑖=1 ), (11) 

with 𝑗 = {𝑈, 𝐿}, and Λ(z) = (1 + 𝑒−𝑧)−1 is the logistic function that guarantees that 𝜏𝑗,𝑡 ∈ (0,1) 

for all t. 

We estimate time-varying linear correlations 𝜌 by applying the dynamic conditional 

correlation (DCC) method proposed by Engle (2002) as follows: 

 𝑅𝑡 ≡ diag(�̃�𝑡)
−1

𝐻𝑡 diag(�̃�𝑡)
−1

= 𝐸𝑡−1(𝜺𝑡𝜺𝑡
′ ), 

𝑄𝑡 = �̅�(1 − 𝛼 − 𝛽)  + 𝛼𝜺𝑡−1𝜺𝑡−1
′ + 𝛽𝑄𝑡−1, 

 

(12) 

where 𝐻𝑡 = 𝐸𝑡−1(𝒖𝑡𝒖𝑡
′ ) with 𝒖𝑡 = (𝑢1,𝑡, 𝑢2,𝑡)′ is the matrix of conditional covariance of the stock 

returns, �̅� is the matrix of unconditional correlation of 𝜺𝑡, and 𝛼 and 𝛽 satisfy the restrictions 

𝛼, 𝛽 ∈ (0,1) with 𝛼 + 𝛽 < 1. Following Joe (1997), we apply the two-step maximum likelihood 
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procedure to estimate the marginal models and the copula density. First, we estimate the GARCH 

marginal parameters �̂�1 by fitting univariate marginal distributions that solve:  

 

�̂�1 =  argmax
𝜽1

∑ ∑ ln 𝑓𝑗(𝑢𝑗,𝑡;  𝜽1),

𝑛

𝑗=1

𝑇

𝑡=1

  (13) 

where ln 𝑓𝑗(𝑢𝑗,𝑡;  𝜽1)  is the log-likelihood of the j-th bank stock return, and �̂�1 is a 𝑛 × 1 vector 

of maximum likelihood estimates of the GARCH marginal parameters. In the second step, given 

the vector �̂�1 from Eq. (13), we compute the DCC copula parameters, �̂�2, as follows: 

 

�̂�2 =  argmax
𝜽2

∑ ln 𝑐(𝐹1(𝑢1,𝑡), 𝐹2(𝑢2,𝑡), … , 𝐹𝑛(𝑢𝑛,𝑡); 𝜽2, �̂�1).

𝑇

𝑡=1

 (14) 

4.3 Value-at-risk (VaR), CoVaR, and ΔCoVaR 

To measure the downside risk and risk spillovers between an individual bank and the 

aggregate banking sector, following Adrian and Brunnermeier (2016), we estimate VaR, CoVaR, 

and ΔCoVaR. VaR measures the maximum loss of a bank, given a tail probability of 𝛼%.  VaR is 

a broadly used measure to evaluate the downside risk of an underlying asset. We estimate the 

downside VaRs of the Australian banks. Let {𝑋1,𝑡, 𝑋2,𝑡} ∶ 𝑡 = 1, 2, … , 𝑇, be the continuously 

compounded stock returns of banks 1 and 2, respectively, then the 𝑉𝑎𝑅𝛼,𝑡
1  for bank 1 is calculated 

as the 𝛼-th quantile of the distribution of returns: 

 Pr(𝑋1,𝑡 ≤ 𝑉𝑎𝑅𝛼,𝑡
1 ) = 𝛼%. (15) 

The CoVaR is the VaR of a bank conditional on some event of another bank. The downside 

CoVaR of bank 1 conditional on the extreme downward movements of bank 2 is expressed as: 



22 
 

 Pr (𝑋1,𝑡 ≤ 𝐶𝑜𝑉𝑎𝑅𝛼,𝛽,𝑡
1|2

|𝑋2,𝑡 ≤ 𝑉𝑎𝑅𝛽,𝑡
2 ) = 𝛼%, (16) 

where Pr(𝑋2,𝑡 ≤ 𝑉𝑎𝑅𝛽,𝑡
2 ) = 𝛽% for a 𝛽-th quantile of 𝑋2,𝑡. 

We also estimate the Delta CoVaR (ΔCoVaR) that is the difference between the VaR for 

underlying bank returns conditional on the extreme movement of underlying bank index return 

and the VaR of the underlying bank returns conditional on the normal state (median values) of the 

respective bank index return. We can write ΔCoVaR as follows: 

 Δ𝐶𝑜𝑉𝑎𝑅𝛼,𝛽,𝑡
1|2

= (𝐶𝑜𝑉𝑎𝑅𝛼,𝛽,𝑡
1|2

−  𝐶𝑜𝑉𝑎𝑅𝛼,50,𝑡
1|2

), (17) 

where 𝐶𝑜𝑉𝑎𝑅𝛼,50,𝑡
1|2

 satisfies  Pr(𝑋1,𝑡 ≤ 𝐶𝑜𝑉𝑎𝑅𝛼,50,𝑡
1|2

|𝑋2,𝑡 ≤ 𝑉𝑎𝑅50,𝑡
2 ) = 𝛼%, for the 50%-th 

quantile (or median) of the return distribution 𝑋2,𝑡. Adrian and Brunnermeier (2016) estimate 

𝐶𝑜𝑉𝑎𝑅𝛼,𝛽,𝑡
1|2

 by the quantile regression approach, which does not provide time-varying estimates. 

Conversely, Girardi and Ergün (2013) employs a multivariate GARCH model to estimate 

𝐶𝑜𝑉𝑎𝑅𝛼,𝛽,𝑡
1|2

 that considers dynamic correlation. Nevertheless, their method depends on the selected 

bivariate distribution of 𝑋1,𝑡 and 𝑋2,𝑡, which can generate a misspecification error in the estimation 

of 𝐶𝑜𝑉𝑎𝑅𝛼,𝛽,𝑡
1|2

. Following Mainik and Schaanning (2014) and Karimalis and Nomikos (2018), we 

use copulas to estimate 𝐶𝑜𝑉𝑎𝑅𝛼,𝛽,𝑡
1|2

. The copula approach provides time-varying estimates of 

𝐶𝑜𝑉𝑎𝑅𝛼,𝛽,𝑡
1|2

, and it is robust to the specification of the bivariate copula so that it overcomes possibly 

misspecification errors.  

4.4 Systemic risk across different frequencies 
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 While the previous studies mostly concentrate on estimating systemic risk for a particular 

data frequency, it is important to analyze the frequency dynamics of systemic risk. This analysis 

is economically meaningful as the entire financial system may respond to a shock to individual 

financial institution at different frequencies with varying strength (Baruník and Křehlík, 2018). 

Therefore, an approach measuring systemic risk on an aggregate level overlooks certain 

fundamental properties of systemic risk (rather than at different time frequencies). To this vein, 

we employ a novel approach for measuring systemic risk across frequencies; we estimate systemic 

risk over short, medium, and long term separately.  

The main economic argument behind the notion that systemic risk may differ across 

different frequencies is that investors operate in different investment horizons (represented by 

frequencies), indicating their preferences for a particular frequency. Investors with heterogenous 

preferences for investment horizons may respond differently to a market/economic shock. 

Additionally, investors with diverse trading horizons may lead to stock market fluctuations and 

cycles with varying lengths (Teply and Kvapilikova, 2017). Therefore, a shock with a relatively 

stronger long-term (short-term) effect is likely to have higher power in low (high) frequency, and 

when the shock is transmitted to other variables, it will indicate long-term (short-term) 

connectedness. For instance, a permanent change in investor expectation about soundness of an 

individual financial institution may be better reflected by long-term connectedness/systemic risk.  

In line with this theoretical argument, the studies of Cogley (2001), Bandi and Tamoni (2014), and 

Baruník and Křehlík (2018), among others, argue that investors time-preference for consumption 

and resulting consumption growth has different cyclical component which generates shocks with 

heterogenous frequency response. This phenomenon creates short-, medium-, and long-term 

systemic risk. We empirically verify this conjecture in this subsection.  
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We decompose the underlying return series into wavelet components to evaluate the VaR, 

CoVaR, and ΔCoVaR for various investment horizons. The wavelet method is based on a Fourier 

representation of a series on its frequencies. Since the Fourier transform loses the time information, 

a Fourier representation can be implemented on a rolling window, a wavelet, to recover both time 

and scale information (Percival and Walden, 2000). We can write a wavelet transform 𝜓𝜏,𝑠(𝑡) with 

time translation 𝜏 and scale 𝑠 as: 

 
𝜓𝜏,𝑠(𝑡) = 𝑠−1/2𝜓

(𝑡 − 𝑠)

𝑠
,  

for 𝑠, 𝜏 ∈ ℝ, 𝑠 ≠ 0, and a mother wavelet 𝜓(𝑡). Since our return series are discrete, we employ a 

discrete wavelet transform on the data with length 2𝐽. We can represent a discrete wavelet 

transform with time translation 𝜏 = 2𝑛 and scale 𝑠 = 2𝐽 as: 

 
𝜓𝐽,𝑛(𝑡) = (2𝐽)−1/2𝜓

(𝑡 − 2𝑛)

2𝑛
,  

for 𝐽, 𝑛 ∈ ℤ. The discrete wavelet transform (DWT) is a band-pass filter that recovers the 

frequencies around its main frequency, generating a scaling filter 𝜙. We define the vector of 

𝐽 wavelet filter 𝜓 elements as (ℎ0, … , ℎ𝐽−1) such that (𝑖) ∑ ℎ𝑗 = 0,𝐽−1
𝑗=0  (𝑖𝑖) ∑ ℎ𝑗

2 = 1,𝐽−1
𝑗=0  and 

(𝑖𝑖𝑖) ∑ ℎ𝑗ℎ𝑗+2𝑘 = 0,𝐽−1
𝑗=0  with 𝑘 ≠ 0. The properties (i)-(iii) of the wavelet filter elements imply an 

orthogonal matrix of discrete wavelet transform. The scaling filter 𝜙 elements (𝑔0, … , 𝑔𝐽−1) also 

satisfy the properties (i)-(iii). 

 For a bank returns series x = {𝑋𝑡}𝑡=1
𝑇 , we can apply the DWT to obtain the vector of 

wavelet coefficients as w = Wx,  where w = [w1, w2,…,wJ,vJ]′ is a (𝐽 + 1)𝑇 × 1 vector of wavelet 
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coefficients with 𝑇 = 2𝐽, and the DWT matrix W(𝐽+1)𝑇×𝑇 specifies the transform (Gençay et al., 

2005). Nevertheless, the DWT is restricted to the number of observations of x being a multiple of 

2
𝐽
. 

A maximum overlap discrete wavelet transform (MODWT) is an extension of the wavelet 

transform that is indifferent to the number of observations of x, and the estimator of the MODWT 

is asymptotically more efficient than that of the DWT (Percival and Walden, 2000). Let ℎ𝑗,𝑘 and 

𝑔𝑗,𝑘 be an element of the wavelet filter 𝜓 and scaling filter 𝜙, respectively. We can write an 

element of the vector of 𝐾 wavelet filter and scaling filter elements of the MODWT as  

(ℎ̃0, … , ℎ̃𝐽−1) and (�̃�0, … , �̃�𝐽−1), with  

 ℎ̃𝑗,𝑘 =  (2𝑗)
−1/2

ℎ𝑗,𝑘      and     �̃�𝑗,𝑘 =  (2𝑗)
−1/2

𝑔𝑗,𝑘   (18) 

such that (𝑖) ∑ ℎ̃𝑗,𝑘 = 0,𝐽−1
𝑗=0  (𝑖𝑖) ∑ ℎ̃2

𝐽,𝑘 = (1/2𝐽),𝐽−1
𝑗=−∞  and (𝑖𝑖𝑖) ∑ ℎ̃𝑗,𝑘ℎ̃𝑗,𝑘+2 = 0𝐽−1

𝑗=0 . We can 

apply the MODWT to obtain the vector of wavelet coefficients as w̃ = W̃x,  where w̃ =

[w̃1, w̃2,…,w̃J,ṽJ]′ is a (𝐽 + 1)𝑇 × 1 vector of wavelet coefficients, w̃j are vectors of wavelet 

coefficients with length 𝑇/2
𝑗
 of the scale of width 𝑎𝑗 = 2

𝑗−1
, ṽj are scaling vectors with length 2

𝑗
, 

and the DWT matrix W̃(𝐽+1)𝑇×𝑇 specifies the transform. 

We can apply the MODWT to obtain an additive wavelet approximation of the return 

series. We define D̃𝑗 = W̃𝑗′�̃�𝑗   as the wavelet detail for the MODWT of variations in the returns x 

at the scale 𝑎𝑗  with levels 𝑗 = 1,2, … , 𝐽. Then, we can write the multiscale decomposition for each 

return 𝑋𝑡 as 
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𝑋𝑡 = ∑ D̃𝑗,𝑡

𝐽+1

𝑗=1

, 𝑡 = 1, 2, … , 𝑇 − 1,    

where D̃𝑗,𝑡 is the t-th element of D̃𝑗. Let Ã𝑗 = ∑ D̃𝑘
𝐽+1
𝑘=𝑗+1  be the MODWT wavelet approximation 

for 0 ≤ 𝑗 ≤ 𝐽. Then, we can decompose the vector of returns x into as follows: 

 

x = Ã𝑗 + ∑ D̃𝑘

𝑗

𝑘=1

, (19) 

where D̃𝑘 are the decomposed signals used for further analysis to evaluate the risk spillover across 

varying frequencies. 

The choice of the wavelet filter class in the MODWT is important to determine the 

frequency variation between scales in the data, since wavelet basis functions need to represent the 

stylized features of the data. Gençay et al. (2001) suggests using a wavelet filter with a balanced 

length (such as length eight) that recovers the main characteristics of financial returns. We employ 

the Daubechies (1992)’s least-asymmetric wavelet filter with length eight, LA(8), because it 

counterbalances length, symmetry, and smoothness (Gençay et al., 2001). The LA(8) wavelet filter 

of Daubechies (1992) has been adopted in many empirical applications in finance and economics 

(Gençay et al., 2005; Bekiros and Marcellino, 2013; Bekiros et al., 2016).  

Following Bekiros and Marcellino (2013), we implement a periodic extension pattern of 

the MODWT to consider boundary estimation problems. We employ the MODWT wavelet 

approximation on the underlying returns to evaluate the VaR, CoVaR, and ΔCoVaR for various 

investment horizons. More specifically, due to heterogeneous investor behavior and time-horizon 
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of investment, we transform the return series into short-, medium-, and long-term horizons that 

correspond to variations over 2-4 days, 32-64 days, and 256-512 days, respectively. Then we 

estimate the VaR, CoVaR, and ΔCoVaR for each subsequent wavelet.  

5. Data and descriptive statistics of stock returns  of banks 

This study considers seven Australian banks: Australia and New Zealand Banking Group 

(ANZ), Commonwealth Bank of Australia (CBA), National Australia Bank (NAB), Westpac 

Banking Corporation (WBC), Auswide Bank Limited (ABL), Bendigo and Adelaide Bank (BAB), 

and Bank of Queensland (BOQ). Among them, the first four banks operate nationally and are the 

major banks, whereas the remaining three are mostly regional banks. While the extant literature 

on Australian banks predominantly concentrates on four major banks (CBA, WBC, ANZ, and 

NAB), including the regional banks in our sample allow us to examine if they have become large 

enough to be systemically important. As of 31 December 2018, these banks hold 81.77% of the 

gross loans and advances, 81.01% of the total banking assets, and 80.17% of the total deposits in 

the Australian banking sector(Australian Prudential Regulation Authority, 2018). 

The sample period considered in this study spans September 1994 to December 2018. This 

sample period is chosen because daily stock price data for Australian banks are available for this 

period, and this period evaluates time-varying systemic risk with respect to relevant international 

events such as the GFC and the European debt crisis.  

We use daily data consistent with the systemic risk papers of Weiß et al. (2014), Acharya 

et al. (2016), and Laeven et al. (2016). Daily stock return is calculated as the logarithmic difference 

of the successive stock price changes between time t and time t – 1. For each bank, we calculate a 

value-weighted index by considering the share price and the number of outstanding shares of the 

remaining banks, following a standard index calculation methodology of the FTSE Russell (see 
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https://www.ftserussell.com/research-insights/education-center/calculating-index-values for a 

detailed discussion on the methodology of index calculation).  

The resulting indices represent the Australian financial system, allowing us to examine 

possible shock spillovers between a distressed financial institution and the overall financial system. 

This approach is useful as it helps to avoid any spurious correlation between an individual bank 

and the financial system when the bank has a large share in the proxy of the financial system. For 

example, CBA accounts for about 25% of the total market capitalization of the Australian banking 

sector. Therefore, systemic risk estimates between CBA and a corresponding index that includes 

CBA will be biased due to CBA’s significant contribution to the index. All data are collected from 

Thompson Reuters DataStream. 

Table 2 presents descriptive statistics of banks stock returns. The major banks typically 

have a higher mean annualized return (except for the NAB) compared with the regional banks. For 

instance, among the major banks, CBA has the highest average return of 9.4%, while BAB 

possesses the highest average return of 5.4% among the regional banks. CBA also has the lowest 

return volatility (with a standard deviation of 0.210) among all the banks, whereas BAB exhibits 

the highest return volatility (with a standard deviation of 0.270). CAB also displays the highest 

Sharpe ratio among all banks, and BAB has the highest Sharpe ratio among regional banks. All 

the return series are negatively skewed (except for the BAB). The kurtosis values greater than three 

indicate that the return series are leptokurtic. The null hypotheses of normality, no-autocorrelation, 

and homoskedasticity are rejected by the Jarque-Bera test, Ljung-Box test, and ARCH-LM test 

(with few exceptions), respectively, at the 1% level. 

[INSERT TABLE 2 HERE] 

https://www.ftserussell.com/research-insights/education-center/calculating-index-values
https://www.ftserussell.com/research-insights/education-center/calculating-index-values
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6. Empirical results and discussion 

 This section is divided in to three subsections. In the first subsection, we discuss results 

pertaining to the estimation of marginal models and copula parameters. The second subsection 

analyzes VaR, CoVaR, and ΔCoVaR estimates for the banks. These estimates are presented for 

the whole sample period, for different subperiods, and for different frequencies. In the third 

subsection, we explore the cross-sectional determinants of systemic risk in the Australian banking 

sector. 

6.1 Time-varying copula-GARCH model 

As indicated in Section 4, we first estimate marginal models for each one of the return 

series of the Australian banks, and then we use the filtered generated returns to estimate the copula 

parameters. Searching for the best-fitted marginal distribution model, we initially estimate an 

ARMA(m,n) with GARCH(p,q), EGARH(p,q), and GJR-GARCH(p,q) specifications.  

We find that the ARMA (1,0)-EGARCH (1,1) model minimizes the AIC. Given the return 

series display autocorrelation and conditional heteroskedasticity, the ARMA (1,0)-EGARCH (1,1) 

specification best captures these stylized facts embedded in the series. The parameters of the 

marginal model are estimated based on t-Student innovations. We also consider other alternatives 

to model the white noise process, 𝜀𝑡, for instance, using Gaussian and skewed-t distribution. The 

results are somewhat similar, and the t-Student distribution captures better the dynamics in the 

return series. For the sake of brevity, we omit the results for alternative distributions (but they are 

available upon request to the authors). 

Table 3 reports the ARMA(1,0)-EGARCH(1,1) estimation results for the Australian banks 

(we omit the estimated parameters for alternative marginal models, but they are available upon 

request). The estimated AR(1) coefficient in the conditional mean equation is significant for all 
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the return series, implying that past returns help predict subsequent returns. Besides, the AR(1) 

coefficients are positive for all the major banks, suggesting the presence of return momentum, but 

the AR(1) coefficients are negative for all the regional banks, implying the presence of return 

reversals. The ARCH (𝛼) and the lagged conditional variance (𝛽) parameters are significant at the 

1% significance level for all the return series. These findings imply that the current-period 

conditional volatility is significantly influenced by past shocks on conditional variance, and the 

conditional volatility is persistent for all the return series.  

The estimated leverage parameter (𝜉) is significant for most of the banks at the 1% level 

(except for ABL and BOQ), suggesting an asymmetric effect of bad and good news on conditional 

volatility. Moreover, the tail-dependence parameter (DoF) is highly significant, indicating that the 

returns distribution display heavy tails and that there are joint extreme movements. This result 

supports the application of t-Student distribution to estimate the marginal distribution model for 

the underlying return series. The diagnostic tests indicate that although the estimated residuals 

exhibit deviation from normality (as the Jarque-Bera statistic is significant for all the return series), 

there is almost no remaining autocorrelation and ARCH effects in the underlying return series 

(since Q(10), Q2(10), and ARCH (10) statistics are statistically insignificant at the 5% level). 

Overall, the Q(10), Q2(10), and ARCH (10) statistics report evidence that an ARMA(1,0)-

EGARCH(1,1) with errors following a t-Student distribution fits well the returns of the Australian 

banks. 

[INSERT TABLE 3 HERE] 

Using the filtered returns generated from the estimated marginal models, we estimate the 

dependence parameters between the returns of Australian banks and that of their corresponding 
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indices. We consider four commonly used copulas: the Gaussian copula, t-Student copula, Clayton 

copula, and SJC copula. Different copula specifications capture diverse dependence structures 

between an individual bank and its corresponding index. For instance, the Gaussian copula models 

the overall dependence by assuming normality of distribution of returns, while the t-Student copula 

considers joint extreme movements. Similarly, the Clayton copula captures lower tail dependence, 

and the SJC copula allows for both lower- and upper-tail dependence. The optimal copula 

framework is chosen by minimizing the AIC.  

Table 4 displays the copula estimates. Panels A, B, C, and D report estimates of the 

Gaussian copula, t-Student copula, Clayton copula, and SJC copula, respectively. According to the 

AIC, the time-varying t-Student copula is the best model for the pairwise dependence between the 

Australian banks and their corresponding indices. Panel B of Table 4 shows that the connectedness 

parameter (𝜌) between individual banks and their corresponding indices are statistically significant 

at the 1% significance level.  The dependence structure is higher for the major banks compared 

with that of the regional banks. The dependence parameter varies between 0.673 (CBA) to 0.715 

(WBC) for the major banks, while the corresponding parameter ranges between 0.101 (ABL) to 

0.420 (BAB) for the regional banks. This result indicates the potential for high systemic risk for 

the major banks compared with the regional banks. The estimated parameter of degrees of freedom 

(DoF) is statistically significant at the 1% level for most of the banks (except for WBC and ABL), 

indicating a strong potential of joint extreme movements between these banks and their 

corresponding indices. The estimated β parameter is significant for most of the return series at the 

1% level, implying persistency in conditional volatility.  

[INSERT TABLE 4 HERE] 
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6.2 VaR, CoVaR, and ΔCoVaR 

 This subsection presents VaR, CoVaR, and ΔCoVaR estimates. As indicated earlier, based 

on a t-Student distributional assumption, we select the best-fitted copula model for each individual 

bank and its corresponding index by minimizing the AIC. The optimal copula model is then used 

to estimate the VaR, CoVaR, and ΔCoVaR. We calculate all these measures using a 95% 

confidence level. 

 Table 5 reports the VaR, CoVaR, and ΔCoVaR estimates for the Australian banks. 

Columns 1, 2, 3, and 4 display the estimates for the whole sample, pre-crisis, crisis, and post-crisis 

periods, respectively. Panel A displays the VaR estimates. We first focus on the whole sample 

period. We observe that VaRs for the regional banks are greater in absolute value compared with 

that of the major banks. For example, VaR ranges between -0.023 to -0.025 for the regional banks, 

whereas VaRs for the major banks are between -0.020 to -0.022. The difference in VaRs across 

the banks are statistically significant (the F-statistic is 272.54). This result implies that regional 

banks exhibit high downside risk compared with the major banks, and, in the worst possible case, 

the asset value of the regional (major) banks will decline by 230 to 250 basis point (200 to 220 

basis point) on average with a 5% probability.  

Overall, this result may be attributed to the operational difference between the two group 

of banks. The regional banks mostly perform retail banking function and their operations are 

typically confined within Australia or within a certain state. On the other hand, the major banks 

operate in both retail and wholesale markets, and they provide diverse services (e.g., fiduciary 

services, underwriting, investment banking, insurance, and risk management) along with the 

conventional deposit taking and lending services. Furthermore, the major banks have overseas 

operations with a dominant presence in New Zealand (Bollen et al., 2015). Thus, the major banks’ 
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diversified operations may have contributed to their lower absolute value of VaRs compared with 

that of less-diversified and concentratedly-operating regional banks.  

Among the major banks, CBA has the lowest downside risk indicated by the lowest VaR, 

while VaRs for the other three major banks are identical. The difference between the VaRs of CBA 

and the other three major banks are statistically significant. Conversely, BAB exhibits the highest 

VaR among the regional banks, whereas VaRs for the other two regional banks are identical. This 

finding again may be attributed to the degree of diversification in the banking operations. For 

instance, CBA appears to have the most diversified operations with a non-interest income 20% of 

its interest income. These rates are 17%, 18%, and 13% for ANZ, NAB, and WBC, respectively. 

On the other hand, the proportion of non-interest income in relation to total income for the regional 

banks are lower than that of the major banks. For example, non-interest income as a percentage of 

interest income (calculated from income statement information obtained from FactSet) is 7%, 

10%, and 9% for ABA, BAB, and BOQ, respectively. 

As for the sub-periods, Table 5 shows that crisis-period VaRs are significantly higher than 

the VaRs in the pre- and post-crisis periods. For example, the crisis-period VaR of ANZ is -0.035, 

while its pre- and post-crisis period VaR are -0.021. We find similar results for all other banks in 

our sample. The post-crisis VaRs are also significantly higher than that in the pre-crisis period 

(except for ANZ), indicating that downside risk or has increased substantially for the Australian 

banks since the global financial crisis in 2008. 

 Panel B of Table 5 presents the CoVaR estimates. Although the major banks have lower 

VaRs than that of the regional banks, the CoVaRs of the major banks are relatively larger in 

absolute value compared with that of the regional banks (for the whole sample period). This result 

is economically meaningful. The larger CoVaRs for the major banks indicate that the entire 
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financial system is more sensitive to risk shocks in the large banks compared with the regional 

banks. Besides, there are high risk spillovers from the major banks to the entire financial system 

compared with that of the regional banks.  

The sub-period results indicate that the crisis-period CoVaR is significantly greater than 

that that of the pre-crisis and post-crisis periods. For example, among the major banks, crisis-

period CoVaR ranges between -0.034 to -0.038, while CoVaRs are between -0.025 to -0.028 (-

0.026 to -0.029) in the pre-(post-)crisis period. This result is intuitive. During the crisis period, 

borrowers found it increasingly difficult to repay their debt. As a result, non-performing loans 

increased for most of the Australian banks, which reduced the stock prices of individual banks that 

negatively affected the whole financial system. 

Panel C of Table 5 shows that cross sectional and time-varying patterns of ΔCoVaR are 

similar to that of VaR and CoVaR. The ΔCoVaR is significantly higher for the major banks 

compared with that of the regional banks, for the whole sample period. Since ΔCoVaR indicates 

the systemic risk contribution of individual banks to the entire financial system, this result is 

consistent with our a priori expectation that large banks are systemically more important than 

regional banks. Then, in the event of default of a regional bank, its consequence to the entire 

financial system is less severe compared with that of a major bank, had it defaulted. The 

geographically less diversified and more concentrated operations of the regional banks may have 

contributed to this result.  

CBA exhibits the highest ΔCoVaR (-0.016), indicating this bank had the highest systemic 

risk contribution in our sample. Thus, when CBA is in distress, it leads to a 160-basis-point decline 

in asset value of the entire financial system of Australia. ANZ, NAB, and WBC contribute to 14, 

140-, and 150 basis-point declines, respectively, in asset value of the entire financial system when 
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they are in distress. Among the banks considered in our sample, ABL has the lowest ΔCoVaR of 

-0.005, whereas BAB and BOQ’s ΔCoVaRs are -0.009, suggesting that these banks account for 

50 to 90 basis-point declines in asset value of the entire financial system when they are in distress.  

The cross-sectional differences in systemic risk may be attributed to the level of non-

interest income and size of the Australian banks. Among the banks considered in this paper, CBA 

generated the highest non-interest income (AUD 7,025 million) in 2018. The non-interest income 

earned by the regional banks were much lower than that of the major banks. ANZ, NAB, and WBC 

earned a non-interest income of AUD 5,496 million, AUD 5518 million, AUD 4520 million in 

2018, respectively. Theoretically, a higher non-interest income leads to a higher revenue volatility 

that results in higher systemic risk. Conversely, low non-interest income indicates concentrated 

revenue and high reliance on traditional banking activities that reduce systemic risk. Brunnermeier 

et al. (2012) and Williams (2016) report evidence that banks with higher non-interest income 

exhibit high systemic risk in the context of US and Australian markets. As for size, larger systemic 

risk for the major banks indicates that the maximum efficient scale in terms of risk have been 

exceeded for the major banks (Williams, 2016). 

Our sub-period analysis reveals that the crisis-period ΔCoVaR is significantly greater than 

that in the pre-crisis period. Then, when the banks are in distress, their negative externality on the 

whole financial system increases significantly during a crisis period. This finding is consistent 

with the results presented in Bollen et al. (2015) for the Australian banks. On average, the crisis-

period ΔCoVaR is about 40% higher than the pre-crisis period ΔCoVaR. For instance, when ANZ 

is in distress, it leads to a 130-basis-point decline in asset value of the whole financial system in a 

non-crisis period; however, a similar distress condition leads to a 220-basis-point decline in asset 

value of the entire financial system in a crisis period. Further, in the post-crisis period, systemic 
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risk (ΔCoVaR) has declined substantially compared with that in the crisis period, which may be 

attributed to the enactment of the Deposit and Wholesale Funding Guarantee (DWFG) scheme in 

Australia at the end of 2008. There was no deposit insurance in Australia before 2008, and the 

introduction of DWFG scheme was taken positively by the banking sector since it guaranteed 

funding in case of insolvency of a bank, which ultimately reduced the possibility of a bank run. 

The DWFG scheme helped decrease the systemic risk in the post-crisis period. Overall, our results 

indicate that CBA and ABL are the most and the least systemically relevant banks in the Australian 

banking sector, respectively, among the banks considered in this paper. 

[INSERT TABLE 5 HERE] 

Next, we interpret the VaR, CoVaR, and ΔCoVaR estimates for different frequencies. 

Panel A of Table 6 highlights that short-term VaR is significantly higher than medium-term and 

long-term VaRs. VaR estimates gradually decrease as we move from short-term to long-term 

trends. For instance, for ANZ, short-, medium-, and long-term VaRs are -0.0143, -0.0062, and -

0.0039, respectively, indicating that (in a worst- possible scenario) the asset value of ANZ will 

decline by 143, 62, and 39 basis point, respectively, in the short-, medium-, and long-term. These 

differences in VaR estimates across frequencies are statistically significant at the 1% level. The 

economic interpretation of this result is that it may be difficult to hedge the trading portfolio 

positions in the short run (in a 2- 4-day horizon), although banks’ trading portfolio positions are 

assumed to be liquid, which leads to a substantial decline in asset value. Nevertheless, exiting or 

hedging trading portfolio positions of the banks is easier in the medium run (in a 32-64-day 

horizon) and long run (256-512 days), highlighting a relatively smaller VaR in the medium and 

long term compared with the VaR in the short term. This result also makes sense from a perspective 

of stock market’s reaction to an extreme change. An extreme change in market conditions (e.g., 
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asset prices, market volatility, and market liquidity) exerts a pronounced impact on stock prices 

that is evidenced in the short run. However, as time passes, the information is gradually diffused 

in stock prices, and the impact of an extreme change on stock prices progressively subsides.  

Interestingly, while we previously reported that aggregate VaR of the regional banks are 

significantly greater than that of the major banks, the segregated VaR across frequencies indicate 

that this result holds in the short and medium run, but not in the long run. More specifically, the 

VaRs of the regional banks are significantly lower than that of the major banks in the long term. 

For example, short-term VaR of the regional and major banks ranges between -0.0144 to -0.0174 

and -0.0124 to -0.0143, respectively. Notwithstanding, long-term VaRs for the regional and major 

banks are between -0.0020 to -0.0027 and -0.0033 to -0.0041, respectively. Then, VaR is more 

persistent for the major banks compared with that of the regional banks. Therefore, an extreme 

change in market conditions leads to a decline in asset value of the major banks even in the long 

term.  

Panel B of Table 6 indicates that short-term CoVaR is significantly higher than medium- 

and long-term CoVaRs, implying that risk spillover from an individual bank to the entire financial 

system is stronger in the short term, but it gradually weakens in the medium and long term. 

Although we previously found that the CoVaR of the major banks are significantly higher than 

that of the regional banks (as presented in Table 6), the disaggregated CoVaR across frequencies 

indicate that the CoVaR of the regional banks is as high as the CoVaR of the large banks in the 

short run (except for ABL). For instance, the short-term CoVaR for the major banks lies between 

-0.0169 to -0.0177, while that of two regional banks (BAB and BOQ) are -0.0178 and -0.0173. 

Then, risk spillovers from the major and regional banks are similarly strong in the short term. 
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Nevertheless, in the medium  and in the long term, risk spillovers from the major banks are stronger 

than that from the regional banks. 

Panel C of Table 6 illustrates that ΔCoVaRs of the major banks are significantly greater 

than ΔCoVaRs of the regional banks, in consonance with the aggregate ΔCoVaR results displayed 

in Table 6. Thus, the large banks are systemically more important than the regional banks, 

regardless of the data frequency considered. Nonetheless, we find certain interesting results in the 

frequency dynamics of systemic risk. First, according to aggregate ΔCoVaR results, CBA was  the 

systemically most important bank (Table 6). On the other hand, disaggregated ΔCoVaR reveals 

that both CBA and WBC exhibit similar systemic importance in the short run. When these banks 

are in distress, they lead to an 85-basis-point decline in asset value of the entire financial system. 

This result, however, does not hold in the medium and long term. The systemic risk contribution 

of WBC is higher compared with that of CBA in the medium and in the long term. Besides, as for 

the regional banks, while we previously reported that BAB and BOQ’s systemic importance is 

identical (in Table 5), their systemic risk contribution varies across frequencies. For instance, BAB 

is systemically more important than BOQ in the short term; however, BOQ’s systemic risk 

contribution is higher than that of BAB in the medium and long term. Overall, these findings 

indicate that systemic risk across frequencies may differ from the aggregate systemic risk pattern 

of the banks. This highlights the relevance of our frequency-based systemic risk analysis. 

 [INSERT TABLE 6 HERE] 

So far, we have interpreted results pertaining to VaR, CoVaR, and ΔCoVaR in the discrete 

whole sample period and in subperiods. Now we present a time-varying picture of the VaR, 

CoVaR, and ΔCoVaR estimates in Figure 1. The blue, red, and green lines represent time-varying 
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VaR, CoVaR, and ΔCoVaR, respectively. Consistent with our previous results, all three risk 

measures were relatively lower in the pre-crisis period (from the start of the sample period until 

2007) in comparison with their level in the crisis period (since the advent of the GFC in 2007 until 

the end of 2008). This result holds for all the banks except for ABL. The lower systemic risk in 

the pre-crisis period may be explained by the market error hypothesis and bank capital 

mismeasurement hypothesis (Sarin and Summers, 2016).2 Although the GFC initiated in beginning 

of 2007, the Australian banks appeared to be protected from the global credit crunch at that time. 

Accordingly, while many countries were cutting their domestic interest rate, the Reserve Bank of 

Australia increased the domestic rate. Nevertheless, during early 2008, in response to a collapse 

of the global financial market, the Australian banking shares also experienced a large fall, which 

negatively affected the whole financial system. This phenomenon is represented by an increase in 

VaR, CoVaR, and ΔCoVaR between the 2008-2009 period. Nonetheless, systemic risk declined 

in the post-crisis period compared with that during the crisis period, which may be attributed to 

the introduction of DWFG in Australia, to regulatory measures taken to increase capital adequacy, 

and to more prudential risk taking. In agreement with our findings, Sarin and Summers (2016) 

demonstrate that regulatory measures together with prudent private sector behavior have 

significantly reduced run risk of the US banks. 

[INSERT FIGURE 1 HERE] 

                                                           
2 The market error hypothesis states that the markets underestimated the risk associated with the banking sector, and 

they exhibited excessive optimism about financial stability in the pre-financial-crisis period. These were later adjusted 

in the crisis period, which is demonstrated by dismal return and high risk in the crisis period. Yellen  (2016) supports 

this hypothesis. Conversely, the bank capital mismeasurement hypothesis asserts that the calculated bank capital was 

a distorted measure of capital that failed to identify the capital gap. Acharya et al. (2016) report evidence of the 

deficiencies of regulatory capital measures, and they show that “countries that are considered to have the safest 

banking sectors according to Basel risk weights (e.g., Belgium, France, and Germany) are considered to be the riskiest 

according to market risk weights.” 
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 We now discuss the results related to time-frequency developments of ΔCoVaR. The blue, 

red, and green lines plot short-, medium-, and long-term ΔCoVaR, respectively. Consistent with 

our previous results, short-term ΔCoVaR is generally higher than the medium- and long-term 

ΔCoVaR. This result is more prominently found during the GFC and for the large banks. Systemic 

risk created in the high frequency (in the short term) may represent the periods (such as the GFC) 

when an item of financial market information is rapidly processed by investors and a shock to an 

individual bank mostly affect short-term cyclical behavior of the financial system (Baruník and 

Křehlík, 2018). Nonetheless, we find instances when long-term ΔCoVaR is greater than short-term 

ΔCoVaR (e.g., ΔCoVaR during the period of 2016 for most of the major banks). Systemic risk 

created in the lower frequency (in the long term) indicates that shocks from an individual bank are 

transmitted to the financial system for longer periods, which may be attributed to the fundamental 

changes in investor expectation regarding factors such as regulatory changes.  As for the regional 

banks, long-term ΔCoVaR is mostly close to zero for BAB and BOQ, indicating that the systemic 

risk contribution of these two banks to the entire financial system occurs predominantly between 

short to medium term.  

 [INSERT FIGURE 2 HERE] 

6.3 Determinants of systemic risk 

In this subsection, we explore the determinants of individual bank’s systemic risk 

contribution. We use a semiannual (two-quarter) average of ΔCoVaR as the dependent variable. 

We consider several idiosyncratic bank characteristics and market-wide variables as explanatory 

variables.  

As for the variables reflecting idiosyncratic bank characteristics, we consider seven 

variables. The first one is the lagged VaR of the bank. The intuition is that the risk of a bank (VaR) 
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contributes positively to forward systemic risk. The second one is the bank size that is estimated 

as the log of the book value of total assets in Australian dollars. There are two competing 

arguments regarding the relationship between bank size and its systemic risk exposure. A large 

bank may be more immune to macroeconomic and liquidity shocks due to its diversified banking 

operations. This argument indicates a negative relationship between bank size and systemic risk 

(Boyd et al., 2004). However, large banks typically receive too-big-to-fail subsidies in the event 

they are in a distress condition (Sarin and Summers, 2016). This phenomenon may stimulate large 

banks to take excessive risk, leading to a positive relationship between banks’ size and its 

contribution to systemic risk.  

The third variable considered is the leverage ratio that is estimated as the ratio of total asset 

to book value of total equity. A high leverage apparently may be taken as an indication of a high 

probability of default. Nevertheless, high leverage may reduce systemic risk as highly levered 

banks are typically found to have high quality loan portfolio, and they are highly liquid (Diamond 

and Rajan, 2001). Yet, an increase in short-term leverage may boost systemic risk. The fourth 

variable examined is liquidity calculated as the loan to deposit ratio (LTD), which measures the 

funds converted into loans from the obtained deposits. When depositors or holders of off-balance-

sheet loan commitments of a bank demand larger withdrawal than normal, an absence of sufficient 

cash asset holding to meet this demand leads to a liquidity crisis. In such circumstance, the bank 

may need to sell some of its less liquid assets even at a lower price (a fire sale) that turns a liquidity 

problem into a solvency one, which ultimately can result in systemic default (Brunnermeier and 

Pedersen, 2008; Aldasoro and Faia, 2016). On the other hand, Louzis et al. (2012) and Makri et al. 

(2014) find that a higher LTD discloses a risk preference for low-quality debt that is expected to 
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increase the level of non-performing loans. As a result, the increased level of non-performing loans 

decreases the stock prices of individual banks, which negatively affects the whole financial system. 

The fifth variable used is the capital adequacy of a bank that is estimated as the tier 1 capital 

ratio, which is a ratio of tier 1 capital to total risk-weighted assets. A well-capitalized bank is less 

prone to systemic risk since a large bank finds it costlier to take on risk, and adequate capital 

obviously reduces the probability of default of a bank (Laeven et al., 2016). The sixth variable 

employed is profitability (return on asset). Profitability should exhibit a negative relationship with 

a bank’s systemic risk because profitability shields a bank from defaulting. However, if a large 

portion of bank’s profitability comes from non-interest income, it may increase bank’s probability 

of default and systemic risk since non-interest income is typically associated with revenue 

volatility and tail risk (Acharya et al., 2012; Williams, 2016). Finally, we apply banks’ funding 

structure calculated as the ratio of total deposit to total asset. This variable essentially reflects the 

reliance of banks on deposit funding. A higher level of deposits decreases the level of systemic 

risk since deposits serve as buffer against different economic shocks (Mayordomo et al., 2014). 

As for the market-wide determinants of systemic risk, we consider four variables. The first 

one is GDP growth rate. Economic activity and financial stability typically exhibit a positive 

relationship (Schleer and Semmler, 2015). In the event of an economic downturn, borrowers may 

fail to meet loan repayment obligation that can ultimately lead to a systemic failure of the banks 

(Hirtle et al., 2016). Moreover, economic growth improves the quality of the loan portfolio, 

decreasing the ratio of non-performing loans to total loans, which leads to a lower systemic risk 

(Babihuga, 2007; Männasoo and Mayes, 2009; Uhde and Heimeshoff, 2009; Ali and Daly, 2010; 

Festić et al., 2011; Chaibi and Ftiti, 2015). The second market-wide variable considered is 

monetary policy interest rates. We consider the Reserve Bank of Australia (RBA) cash reserve rate 
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in this regard. If the assets of banks are highly sensitive to changes in short-term interest rates, a 

monetary tightening can result in large losses to the banks that ultimately generate high systemic 

risk (Ramos-Tallada, 2015).  

The third market variable is the change in exchange rate between the Australian dollar 

(AUD) and the New Zealand dollar (NZD), given the significant exposure of the Australian banks 

to the economy of New Zealand. A large amount of foreign currency loans in the balance sheet of 

banks can trigger simultaneous failures of banks if borrowers find it difficult to service the loan in 

case of a depreciation of the domestic currency (Yeşin, 2013). Finally, we consider housing price 

growth as a market-wide variable. Since the loan portfolio of Australian banks is dominated by 

real estate mortgage loan, a downturn in the real estate market may cause a deleveraging pressure 

that can result in a negative feedback loop and higher systemic risk in the overall banking sector 

(Downing et al., 2005; Capozza and Order, 2011; Liu et al., 2019). Conversely, increases in 

housing prices lead to disproportionate lending, resulting in a higher level of risky assets by the 

banks that reinforces real economic shocks (von Peter, 2009; Gimeno and Martínez-Carrascal, 

2010; Anundsen and Jansen, 2013; Anundsen et al., 2016). Thus, an increase in housing prices 

may positively contribute to systemic risk. 

To explore systemic risk’s relationship with bank-specific and market-wide variables, we 

estimate the following panel regression model:  

 ΔCoVaR̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
𝑖,𝑡 = 𝛼 + 𝜷𝑭𝑖,𝑡−1 + 𝜸𝑴𝑡−1 +  𝜖𝑖,𝑡,                            (20) 

where ΔCoVaR̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
𝑖,𝑡 is the semiannual average of the daily ΔCoVaR for bank i at time t, 𝑭𝑖,𝑡−1 is a 

vector of bank-specific lagged characteristics, 𝑴𝑡−1 is a vector of lagged market-wide variables, 

and 𝜖𝑖,𝑡 is a panel regression error term. The vector 𝑭𝑖,𝑡−1 includes the following bank-specific 
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lagged characteristics: VaR, Size, Leverage, Capital adequacy ratio, Profitability, and Funding 

structure. VaR is the VaR of the bank, 𝑆𝑖𝑧𝑒 is the natural log of the book value of assets, and 

𝐿𝑒𝑣𝑒𝑟𝑎𝑔𝑒 is the ratio of total asset to book value of equity. 𝐿𝑖𝑞𝑢𝑖𝑑𝑖𝑡𝑦 is the ratio of total loan to 

total deposit, and 𝐶𝑎𝑝𝑖𝑡𝑎𝑙 𝑎𝑑𝑒𝑞𝑢𝑎𝑐𝑦 𝑟𝑎𝑡𝑖𝑜 is the ratio of tier 1 capital (equity capital and 

disclosed reserves) to total risk-weighted assets.  𝑃𝑟𝑜𝑓𝑖𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 is the return on asset, and 

𝐹𝑢𝑛𝑑𝑖𝑛𝑔 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 is the ratio of total deposit to total asset. 

The vector 𝑴𝑡−1 includes the following lagged market-wide variables: GDP growth rate, 

Cash rate, Exchange rate change, and Housing price growth. 𝐺𝐷𝑃𝑔𝑟𝑜𝑤𝑡ℎ 𝑟𝑎𝑡𝑒 is the growth rate 

of constant dollar Australian GDP, 𝐶𝑎𝑠ℎ 𝑟𝑎𝑡𝑒 is the RBA cash reserve rate, 

𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒 𝑟𝑎𝑡𝑒 𝑐ℎ𝑎𝑛𝑔𝑒 the change in the exchange rate between the Australian dollar and the 

New Zealand dollar, and 𝐻𝑜𝑢𝑠𝑖𝑛𝑔 𝑝𝑟𝑖𝑐𝑒 𝑔𝑟𝑜𝑤𝑡ℎ is the growth rate in Australia-DataStream Real 

Estate price index. We obtain data on bank-specific variables from FactSet and Worldscope, and 

we gather data on market-wide variables from DataStream. Our panel data consist of 34 

semiannual periods from the first semester of 2002 to the last semester of 2018. We selected this 

sample period because of data availability of the characteristics of the banks. 

Table 7 reports the panel regression estimates of Eq. (20) with Newey-West standard errors 

with up to five autocorrelation periods in parentheses. Columns 1-2 of Table 7 display the results 

derived from the model that considers ΔCoVaR̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
𝑖,𝑡 as the dependent variable, and Columns 3-8 of 

Table 7 present the results for the models that consider decomposed ΔCoVaR̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
𝑖,𝑡 as the dependent 

variable. Model 1 includes only idiosyncratic bank-specific variables, and Model 2 considers both 

bank-specific and market-wide variables. We first focus on Columns 1-2 of Table 7. As expected, 

the lagged VaR of a bank contributes positively to the systemic risk at the 1% level. Besides, we 

find that size has a significant positive impact on forward systemic risk. The estimated coefficient 
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is significant at the 1% significance level. Consistent with our previous findings of higher systemic 

risk for major Australian banks, this finding is in line with the notion that large banks tend to 

receive too-big-to-fail subsidies in a distress condition that increase their systemic risk contribution 

to the financial system (Sarin and Summers, 2016). Our result also supports the findings of 

Brunnermeier et al. (2012), López-Espinosa et al. (2015), Black et al. (2016), Laeven et al. (2016), 

Karimalis and Nomikos (2018), and Varotto and Zhao (2018), among others, who show that larger 

banks are great contributors to systemic risk.  

We further observe a significant positive relationship between banks’ systemic risk 

contributions and their leverage position. This result is in line with our a priori expectation that 

high leverage indicates a high probability of default, which likely leads to a higher systemic risk. 

Beltratti and Stulz (2012), Brunnermeier et al. (2012), López-Espinosa et al. (2015), Karimalis and 

Nomikos (2018), among others, report a positive impact of leverage on systemic risk.  

Next, we find that systemic risk is significantly lower for the banks with high capital 

adequacy ratios. This result supports the hypothesis that a well-capitalized bank finds it costlier to 

take on high risk, and it underscores that high capital adequacy indicates a capital buffer against 

the probability of a bank’s failure. Acharya et al. (2017) argue that a bank failure in a well-

capitalized system does not exert negative externalities in the economy. Although Laeven et al. 

(2016) and Varotto and Zhao (2018), among others, find low systemic risk for well-capitalized 

banks, Yun and Moon (2014) provide evidence of an insignificant relationship between systemic 

risk and capital adequacy ratio.  

Although the estimated coefficient of liquidity is slightly significant (at the 10% level), a 

bank’s systemic risk contribution positively responds to its liquidity, measured by its LTD. Then, 

our finding is consistent with Louzis et al. (2012) and Makri et al. (2014), who find that an 
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increasing LTD leads to a higher level of non-performing loans and an greater systemic risk. This 

result is economically meaningful as the LTD discloses the quality of loans of banks, which 

ultimately can increase systemic risk associated with the banks. In line with our result, Yun and 

Moon (2014) and Karimalis and Nomikos (2018) also provide evidence that liquidity is a 

significant determinant of banks’ systemic risk. Nevertheless, our result is in contrast to Varotto 

and Zhao (2018), who report that bank’s specific systemic risk is invariant to its liquidity. The 

above-mentioned results are robust for both Models 1 and 2.  

We find a positive relationship between systemic risk and the profitability of a bank. This 

result may come as a surprise because high profitability typically shields banks against the default 

probability; therefore, a high level of profitability should be associated with low systemic risk. 

Instead, our result is consistent with the idea that since non-interest income contributes to a large 

portion of operating income of major Australian banks, their higher profitability is associated with 

a high revenue volatility and tail risk (Acharya et al., 2012; Williams, 2016). This result also holds 

for Model 2 at the 5% level. The variable reflecting the reliance of banks on deposit funding 

(funding structure) is statistically insignificant for Model 1, but it is slightly significant (at the 10% 

level) for Model 2. This result is in line with Laeven et al. (2016), who find a significant positive 

relationship between systemic risk and banks’ funding structure for a large sample of global banks. 

As for the market-wide variables, systemic risk is negatively associated with economic 

growth, and cash rate contributes to systemic risk. The negative relationship between economic 

growth and systemic risk arises as economic growth is typically accompanied by greater quality 

of the loan portfolio and a lower level of non-performing loans, which decreases the systemic risk. 

A financial crisis may follow an economic downturn, in line with (Männasoo and Mayes, 2009; 

Uhde and Heimeshoff, 2009; Festić et al., 2011; Louzis et al., 2012; Hirtle et al., 2016). The 
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economic story behind the positive response of systemic risk to cash rate is that a high cash reserve 

rate is an indication of a restrictive monetary policy. Under such circumstance, the lending 

decisions of the commercial banks are scarcer and expensive, increasing the overall interest rate 

and the probability of loan default that generates high systemic risk (Lange et al., 2015).  

Systemic risk is invariant to the change in the AUD/NZD exchange rate, but it is positively 

affected by changes in housing prices at the 10% level. The positive relationship between housing 

prices and systemic risk may be explained by the effect of increases in lending due to higher 

housing prices, resulting in a self-reinforcing effect that increases houses prices and amplifies real 

economic shocks (von Peter, 2009; Gimeno and Martínez-Carrascal, 2010; Anundsen and Jansen, 

2013; Anundsen et al., 2016). The incremental explanatory power of the model including the 

market-wide variables is significant. The adjusted R squared for the Model 1 is 56%; when we 

augment Model 1 with four market-wide variables, its adjusted R squared increases to 69.6%.  

We also estimate Eq. (20) separately for short-, medium-, and long-term systemic risk, and 

we report the results in Columns 3-8 of Table 7. This analysis reveals whether asymmetric systemic 

risk across frequencies is attributed to a different set of bank-specific and market-wide variables. 

Our key results remain mostly unchanged for short-term ΔCoVaR. For instance, VaR, size, 

leverage, and cash rate have significant explanatory power for short-term systemic risk. 

Nonetheless, liquidity, funding structure, and housing price growth become insignificant for short-

term ΔCoVaR, and size, profitability, and cash rate turn into statistically non-significant for 

medium-term ΔCoVaR. Finally, regarding long-term systemic risk, VaR and liquidity are the most 

important bank-specific variables for explaining systemic risk, while cash rate is the only market-

wide variable that has a statistically significant influence on systemic risk. Overall, our results 

illustrate that systemic risk across the frequencies is attributed to a different set of idiosyncratic 
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bank-specific and market-wide variables, consistent with our previous conjecture that asymmetric 

systemic risk across frequencies arises as investors operate in different investment horizons 

(frequencies), and investors have different speeds of information processing. Therefore, economic 

shocks exert different impacts on cyclical nature of the financial system. 

[INSERT TABLE 7 HERE] 

7. Conclusion 

 This paper examines systemic risk in the Australian banking sector using the delta 

conditional value-at-risk (ΔCoVaR) approach. The Australian banking sector is characterized as 

(i) highly concentrated with small number of large banks, (ii) with a loan portfolio dominated by 

real estate mortgage loan, and (iii) heavily reliant on off-shore sources of wholesale funding. These 

characteristics contribute to a unique pattern of systemic risk of well-performing Australian banks 

compared with their North-American and European counterparts.  

Although the systemic risk literature has been expanded after the GFC, we extend the 

literature to several fronts. First, while the literature mostly applies a quantile regression 

framework to measure ΔCoVaR, we rely on a novel copula-based methodology. The copula 

approach enables estimation of the entire joint distribution even in the presence of heavy-tailed 

distributions and heteroscedasticity. Besides, since the literature mostly focus on estimating 

systemic risk at a particular data frequency, we measure systemic risk across different frequencies. 

This analysis enables us to identify short-, medium-, and long-term systemic risk, and it links 

economic properties of the market to the systemic risk in a particular data frequency. Further, we 

explain cross-sectional and time-series variation in systemic risk using idiosyncratic bank 

characteristics and market-wide variables. This analysis has largely been ignored in the context of 

the Australian banking sector. 
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We report several key findings in this paper. First, large banks are systemically more 

important than regional banks. However, from the frequency-based systemic risk analysis, 

systemic risk contribution of the regional banks is as high as that of the major banks in the short 

term. Nonetheless, in the medium and in the long term, regional banks are systemically less 

important than the major banks.  Second, systemic risk in crisis period is significantly higher than 

that in the pre-crisis period, indicating that negative externalities of a distressed financial 

institution are higher during a crisis period. Although systemic risk in the post-crisis period is 

significantly lower compared with the crisis period potentially due to the introduction of deposit 

insurance, the level of systemic risk in the post-crisis period is significantly higher than that of the 

pre-crisis period, illustrating that systemic risk in the Australian banking sector has increased 

substantially after the GFC. Third, frequency-based systemic risk further reveals that short-term 

systemic risk is higher than medium- and long-term systemic risk, showing that systemic risk 

gradually weakens in the long-term. Finally, we find that idiosyncratic bank characteristics (such 

as size, leverage, liquidity, and capital adequacy) and market-wide variables (such as GDP growth 

rate and cash rate) significantly explain systemic risk in the Australian banking sector. 

Nevertheless, their explanatory power varies across frequencies. 

 Our findings have important policy implications. Our result of major banks’ 

disproportionate contribution to systemic risk may allow the Australian regulatory authority to 

increase capital charge for the major banks. Despite the introduction of deposit insurance, an 

increase in systemic risk in the post-crisis period suggests that the Australian government need to 

adjust too-big-to-fail subsidies. Furthermore, the asymmetric systemic risk pattern across 

frequencies indicates that the nature of a shock, diverse response of investors operating in different 
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investment horizons, and economic properties of market account for disparate levels of systemic 

risk across frequencies. A future research is warranted along this line. 
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Table 1 

Main financial soundness indicators of the Australian bank sector (in %) 

 Capital adequacy Liquidity Asset quality Profitability 

 Total capital 

adequacy ratio 

Tier I risk-

based capital 

ratio 

Loan to deposit 

ratio 

Savings deposit to 

total deposit ratio 

Loan loss provision 

to total loan 

Non-performing 

loan to total loan 

ROE 

 2007 2018 2007 2018 2007 2018 2007 2018 2007 2018 2007 2018 2007 2018 

ANZ 10.10 15.20 6.70 13.40 142.71 115.14 79.71 87.36 0.19 0.11 0.23 0.33 19.96 12.00 

CBA 9.76 15.00 7.14 12.30 150.91 125.40 25.44 29.85 0.14 0.14 0.14 0.42 19.97 14.37 

NAB 10.00 14.12 6.70 12.38 141.44 132.93 31.71 45.73 0.23 0.13 0.31 0.25 15.96 11.43 

WBC 9.50 14.74 6.50 12.78 137.49 126.63 64.47 77.06 0.18 0.10 0.15 0.20 21.96 12.86 

               

ABL N/A 14.89 N/A 12.68 190.42 121.79 60.32 69.23 0.00 0.04 0.54 0.31 17.91 7.52 

BAB 10.24 12.85 7.98 10.96 91.39 104.24 76.43 80.2 0.06 0.13 1.30 1.34 12.72 7.87 

BOQ 11.50 12.76 8.50 10.99 138.84 119.12 29.41 61.11 0.12 0.09 3.27 2.25 14.68 8.79 

Notes: This table reports financial soundness indicators for seven Australian banks: Australia and New Zealand Banking Group (ANZ), Commonwealth Bank 

of Australia (CBA), National Australia Bank (NAB), Westpac Banking Corporation (WBC), Auswide Bank Limited (ABL), Bendigo and Adelaide Bank (BAB), 

and Bank of Queensland (BOQ). Total capital adequacy ratio is the ratio of total capital available to risk-weighted credit exposures of banks, and Tier 1 risk-

based capital ratio is the proportion of tier 1 capital (equity capital and disclosed reserves) to total risk-weighted assets. ROE is the return on equity. 

 

Table 2 

Descriptive statistics of stock returns of Australian banks 

 Mean (%) 

Standard 

Deviation 

Sharpe 

Ratio Maximum Minimum Skewness Kurtosis JB Q(10) Q2(10) ARCH(10) 

ANZ 7.682 0.240 0.612 0.137 -0.116 -0.023 9.364 10356.5 59.07 1942.10 816.63 

CBA 9.377 0.210 0.879 0.118 -0.095 -0.088 8.289 7158.5 16.41 2824.96 997.66 

NAB 3.643 0.236 0.247 0.160 -0.145 -0.406 11.890 20375.2 49.93 1740.50 726.03 

WBC 7.390 0.228 0.616 0.086 -0.118 -0.159 6.623 3381.2 30.06 3106.10 1146.10 

            

ABL 3.450 0.238 0.226 0.239 -0.215 -0.248 27.896 158522.9 123.20 701.09 779.83 

BAB 5.383 0.270 0.358 0.255 -0.112 0.701 16.455 46785.5 42.39 188.06 130.09 

BOQ 3.611 0.257 0.224 0.165 -0.200 -0.180 12.238 21852.8 12.83 424.55 247.53 

Notes: The table presents the descriptive statistics of daily stock returns of Australian banks. The sample period spans 1 October 1994 to 31 December 2018. JB 

is the Jarque-Bera test for normality. Q(10) and Q2(10) are the Ljung-Box test statistics of the autocorrelation in returns and in standardized squared returns, 

respectively, with ten lags. ARCH(10) corresponds to the conditional heteroscedasticity test statistic with ten lags. Bold values of the test statistics denote the 

rejection of the null hypothesis at the 1% significance level, for each one of the tests. 
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Table 3 

ARMA (1,0)-EGARCH (1,1) estimated parameters 

  ANZ CBA NAB WBC ABL BAB BOQ 

Const. 0.000 0.000** 0.000*** 0.000 0.000 0.000 0.000** 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

AR(1) 0.062*** 0.066*** 0.053*** 0.053*** -0.077*** -0.058*** -0.051*** 

 (0.012) (0.013) (0.012) (0.013) (0.011) (0.012) (0.012) 

        
Const. -0.137*** -0.142*** -0.112*** -0.101*** -0.740*** -0.154*** -0.090*** 

 (0.025) (0.027) (0.023) (0.021) (0.147) (0.031) (0.021) 

𝛽 0.984*** 0.984*** 0.987*** 0.989*** 0.880*** 0.981*** 0.989*** 

 (0.003) (0.003) (0.003) (0.002) (0.015) (0.004) (0.003) 

𝛼 0.166*** 0.168*** 0.159*** 0.137*** 1.000** 0.143*** 0.126*** 

 (0.014) (0.013) (0.013) (0.012) (0.481) (0.013) (0.011) 

𝜉 -0.040*** -0.030*** -0.028*** -0.035*** 0.073 -0.024*** -0.006 

 (0.009) (0.008) (0.008) (0.008) (0.061) (0.008) (0.008) 

DoF 7.701*** 7.594*** 6.418*** 10.419*** 2.047*** 4.516*** 4.569*** 

 (0.640) (0.654) (0.421) (1.372) (0.046) (0.282) (0.253) 

        

LogL 18015 18783 18283 18110 18555 17188 17576 

AIC -36015 -37551 -36551 -36205 -37096 -34363 -35139 

BIC -35968 -37504 -36504 -36158 -37049 -34316 -35092 

Skewness -0.334 -0.308 -0.823 -0.208 0.191 0.415 -0.711 

Kurtosis 5.234 4.771 9.069 3.763 16.536 11.353 30.396 

JB 1390*** 898*** 10109*** 193*** 46884*** 18016*** 192401*** 

Q (10) 8.695 12.961 6.598 10.712 17.005 20.076* 11.122 

Q2(10) 5.046 18.249 2.812 13.484 6.652 7.000 1.453 

ARCH(10) 4.933 17.885 2.852 13.688 7.101 6.842 1.461 

Notes: JB is the Jarque-Bera test statistic for normality. Q(10) and Q2(10) are the Ljung-Box test statistics for 

autocorrelation in residuals and standardized squared residuals, respectively, with 10 lags. ARCH(10) denotes the 

conditional heteroscedasticity test statistic of the residuals with 10 lags. The notation ***, **, and * represent 

statistical significance at the 1%, 5%, and 10% level, respectively. The notation ***, **, and * on the diagnostic 

tests denote the rejection of null hypothesis of normality, no autocorrelation, and conditional homoscedasticity of 

the residuals at the 1%, 5%, and 10% level, respectively. 
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Table 4 

Copula estimates 

  ANZ CBA NAB WBC ABL BAB BOQ 

Panel A: Gaussian copula estimates 

ρ 0.723*** 0.696*** 0.710*** 0.730*** 0.101*** 0.423*** 0.419***  
(0.001) (0.001) (0.002) (0.001) (0.000) (0.003) (0.003) 

α 0.060*** 0.034 0.044*** 0.050*** 0.015 0.021** 0.013  
(0.012) (0.031) (0.012) (0.016) (0.011) (0.010) (0.011) 

β 0.911*** 0.944*** 0.939*** 0.929*** 0.574 0.976*** 0.986***  
(0.019) (0.060) (0.020) (0.026) (0.299) (0.013) (0.013) 

Log(L) 2508.22 2193.16 2401.67 2560.85 32.66 865.72 829.77 
AIC -5012.43 -4382.32 -4799.34 -5117.70 -61.32 -1727.44 -1655.54 

Panel B: t-Student copula estimates 
ρ 0.710*** 0.673*** 0.694*** 0.715*** 0.101*** 0.420*** 0.416*** 
 (0.002) (0.002) (0.002) (0.001) (0.000) (0.003) (0.003) 
DoF 6.325*** 5.239*** 6.268*** 6.471 34.834*** 8.818*** 11.211*** 
 (0.474) (0.372) (0.460) - (8.743) (1.455) (1.603) 
α 0.044 0.018 0.028** 0.011 0.015 0.013 0.011 
 (0.044) (0.014) (0.014) - (0.012) (0.019) (0.009) 
β 0.949*** 0.981*** 0.970*** 0.989 0.579 0.987*** 0.989*** 
 (0.060) (0.018) (0.018) - (0.294) (0.022) (0.010) 
Log(L) 2677.01 2406.36 2551.16 2713.83 35.04 914.08 859.92 
AIC -5348.02 -4806.72 -5096.32 -5421.67 -64.087 -1822.16 -1713.84 

Panel C: Clayton copula estimates 
ρ 

 

0.441*** 0.418*** 0.418*** 0.434*** 0.046*** 0.242*** 0.237*** 
 (0.001) (0.001) (0.000) (0.000) (0.000) (0.001) (0.001) 
ω 0.240*** 0.176*** 0.473*** 0.643*** -0.109 0.115*** 0.082*** 
 (0.046) (0.046) (0.067) (0.076) (0.084) (0.038) (0.021) 
α -1.264*** -0.942*** -0.046*** -0.059 -0.162 -0.688*** -0.478*** 
 (0.246) (0.240) (0.006) (0.068) (0.229) (0.241) (0.125) 
β 0.880*** 0.901*** -1.001*** -0.991*** 0.942*** 0.941*** 0.963*** 
 (0.028) (0.032) (0.000) (0.023) (0.016) (0.022) (0.010) 
Log(L) 2086.28 1839.89 1800.57 1912.63 25.69 723.23 701.07 
AIC -4166.56 -3673.78 -3595.13 -3819.25 -45.40 -1440.45 -1396.14 

Panel D: SJC copula estimates 

ρU 0.520*** 0.507*** 0.503*** 0.538*** 0.001*** 0.237*** 0.222*** 
 (0.002) (0.002) (0.002) (0.002) (0.000) (0.003) (0.002) 
ρL 0.551*** 0.528*** 0.539*** 0.532*** 0.002*** 0.279*** 0.278*** 
 (0.001) (0.001) (0.001) (0.002) (0.000) (0.002) (0.002) 
ωU 0.074 2.285 2.019 0.037** -4.708 0.072*** 0.054*** 
 (0.144) (18.590) (1.756) (0.016) - (0.021) (0.013) 
αU -0.397 -10.000 -10.000 -0.195** -1.388 -0.365*** -0.275*** 
 (0.785) (79.125) (8.777) (0.087) - (0.107) (0.065) 
βU 0.987*** 0.178 0.473 0.994*** 1.309 0.988*** 0.991*** 
 (0.025) (7.062) (0.464) (0.003) - (0.004) (0.002) 
ωL 2.466 2.723*** 2.702 2.205*** -2.139 0.757 0.304*** 
 (2.656) (0.624) (1.740) (0.817) - (0.516) (0.087) 
αL -10.00 -10.00*** -10.00 -9.963*** -0.897 -3.917 -1.509** 
 (9.790) (2.895) (7.377) (3.485) - (2.776) (0.453) 
βL 0.179 -0.210 -0.146 0.326*** 3.304 0.743*** 0.916*** 
 (0.961) (0.256) (0.616) (0.293) - (0.191) (0.025) 
Log(L) 2545.53 2260.93 2391.92 2545.98 35.24 890.33 831.04 
AIC -5079.06 -4509.88 -4771.85 -5079.97 -58.48 -1768.66 -1650.08 

Notes:  Panels A, B, C, and D report the estimates of the time-varying Gaussian copula, t-Student-copula, Clayton 

copula, and SJC copula, respectively, between the underlying banks and their corresponding indices. The standard 

errors are presented in the parenthesis. The symbols ***, **, and * indicate statistical significance of the coefficient 

at the 1%, 5%, and 10% level, respectively. 
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Table 5 

VaR, CoVaR, and ΔCoVaR estimates 

 Whole sample  Pre-crisis  Crisis  Post-crisis  Test of difference 

 (1) (2) (3) (4) (2) – (3)  (3) – (4) (2) – (4)  

Panel A: VaR  

ANZ -0.022 -0.021 -0.035 -0.021 19.18 -19.02 0.16 
CBA -0.020 -0.018 -0.031 -0.019 20.00 -18.91 4.36 
NAB -0.022 -0.020 -0.036 -0.021 22.04 -20.27 6.66 
WBC -0.022 -0.020 -0.034 -0.022 20.40 -18.34 7.74 
ABL -0.023 -0.022 -0.026 -0.023 11.91 -8.95 5.83 
BAB -0.025 -0.024 -0.040 -0.024 32.33 -30.29 5.29 
BOQ -0.023 -0.020 -0.036 -0.024 28.21 -20.38 25.76 
F-statistic (Major banks) 133.23 156.69 10.46 87.77    
F-statistic (Reg. banks) 192.69 234.11 231.31 25.73    
F-statistic (All banks) 272.54 258.89 54.24 240.59    

Panel B: CoVaR 

ANZ -0.027 -0.026 -0.034 -0.026 19.18 -19.02 0.16 

CBA -0.029 -0.028 -0.038 -0.029 20.00 -18.90 4.36 
NAB -0.027 -0.025 -0.035 -0.026 22.04 -20.27 6.66 
WBC -0.028 -0.027 -0.036 -0.028 20.40 -18.34 7.74 
ABL -0.024 -0.024 -0.025 -0.024 11.91 -8.86 5.83 
BAB -0.026 -0.025 -0.032 -0.026 32.34 -30.25 5.29 
BOQ -0.026 -0.025 -0.031 -0.026 28.21 -20.35 25.76 

 F-statistic (Major banks) 306.51 344.87 12.77 221.67    
F-statistic (Reg. banks) 924.75 398.98 461.05 616.25    
F-statistic (All banks) 687.05 582.76 142.36 363.18    

Panel C: ΔCoVaR 

ANZ -0.014 -0.013 -0.022 -0.013 19.18 -19.02 0.16 

CBA -0.016 -0.014 -0.024 -0.015 20.00 -18.91 4.36 
NAB -0.014 -0.012 -0.022 -0.013 22.04 -20.27 6.66 
WBC -0.015 -0.014 -0.023 -0.015 20.40 -18.34 7.74 
ABL -0.005 -0.005 -0.005 -0.005 11.91 -8.95 5.83 
BAB -0.009 -0.009 -0.015 -0.009 32.34 -30.29 5.29 
BOQ -0.009 -0.008 -0.014 -0.010 28.21 -20.37 25.76 
F-statistic (Major banks) 183.56 209.55 6.94 143.71    
F-statistic (Reg. banks) 5426.91 3820.75 915.14 3409.49    
F-statistic (All banks) 4615.20 4706.50 363.52 2741.79    
Notes: Panels A, B, and C report the VaR, CoVaR, and ΔCoVaR estimates, respectively. Bold values of the test statistics represent statistical significance at the 

1% level. 
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Table 6 

VaR, CoVaR, and ΔCoVaR estimates for various frequency horizons 

 Short-term Medium-term Long-term Test of difference 

  (1) (2) (3) (1) – (2) (2) – (3) (1) – (3) 

Panel A: VaR 

ANZ -0.0143 -0.0062 -0.0039 -87.16 -35.95 -109.46 
CBA -0.0124 -0.0059 -0.0035 -74.97 -40.31 -106.04 
NAB -0.0136 -0.0058 -0.0033 -79.57 -42.15 -106.53 
WBC -0.0141 -0.0065 -0.0041 -84.36 -36.98 -108.53 
ABL -0.0144 -0.0042 -0.0020 -84.87 -51.71 -106.04 
BAB -0.0174 -0.0069 -0.0027 -90.22 -55.59 -137.95 
BOQ -0.0158 -0.0065 -0.0020 -84.43 -71.42 -140.97 
F-statistic (Major banks) 116.84 37.79 98.52    
F-statistic (Reg. banks) 216.49 641.60 285.46    
F-statistic (All banks) 310.04 269.93 671.40    

Panel B: CoVaR 

ANZ -0.0175 -0.0062 -0.0031 -196.46 -71.25 -245.76 
CBA -0.0172 -0.0067 -0.0026 -173.07 -98.06 -263.48 
NAB -0.0169 -0.0060 -0.0025 -184.62 -93.04 -251.05 
WBC -0.0177 -0.0072 -0.0043 -174.47 -54.73 -210.71 
ABL -0.0147 -0.0049 -0.0022 -524.30 -138.68 -651.96 
BAB -0.0178 -0.0054 -0.0016 -297.69 -140.48 -444.57 
BOQ -0.0173 -0.0055 -0.0016 -302.06 -150.07 -450.39 
F-statistic (Major banks) 47.83 220.77 999.89    
F-statistic (Reg. banks) 3260.45 274.56 1701.98    
F-statistic (All banks) 617.50 670.42 1960.71    

Panel C: ΔCoVaR 

ANZ -0.0085 -0.0041 -0.0026 -76.97 -35.58 -101.91 
CBA -0.0085 -0.0044 -0.0020 -66.42 -57.47 -116.02 
NAB -0.0080 -0.0037 -0.0020 -73.77 -45.01 -105.47 
WBC -0.0088 -0.0049 -0.0037 -63.21 -23.60 -79.43 
ABL -0.0017 -0.0015 -0.0013 -9.02 -12.31 -21.13 
BAB -0.0060 -0.0026 -0.0007 -83.83 -68.21 -146.59 
BOQ -0.0056 -0.0027 -0.0008  -74.21 -71.41 -136.47 
F-statistic (Major banks) 35.67 227.97 910.06    
F-statistic (Reg. banks) 6667.21 819.45 939.42    
F-statistic (All banks) 3532.78 1561.64 2443.83    
Notes: Panel A, B, and C report the VaR, CoVaR, and ΔCoVaR estimates, respectively. Bold values of the test statistics represent statistical significance at the 

1% level. 
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Table 7  

Determinants of systemic risk 

 Dependent variable: 

ΔCoVaR𝒊𝒕 

Dependent variable: Short-

term ΔCoVaR𝒊𝒕 

Dependent variable: 

Medium-term ΔCoVaR𝒊𝒕 

Dependent variable: Long-

term ΔCoVaR𝒊𝒕 

Variable Model 1 Model 2 Model 1 Model 2 Model 1 Model 2 Model 1 Model 2 

Constant -4.783*** -9.393*** -1.719*** -4.181*** -1.187*** -0.708 -0.614 0.334  
(-4.57) (-3.91) (-2.95) (-3.44) (-2.83) (-1.61) (-0.98) (0.47) 

VaR 0.338*** 0.333*** 0.318*** 0.314*** 0.317*** 0.349*** 0.323*** 0.310*** 

 (6.34) (7.45) (6.03) (6.69) (3.13) (4.46) (6.04) (5.71) 

Size 0.471*** 0.925*** 0.156* 0.404*** 0.067 0.076 0.013 -0.071  
(2.96) (4.29) (1.68) (3.90) (1.20) (1.38) (0.15) (-0.88) 

Leverage 0.094*** 0.046* 0.046*** 0.019 0.019*** 0.010* -0.007 -0.001  
(4.03) (1.85) (3.54) (1.38) (3.64) (1.98) (-0.72) (-0.08) 

Liquidity 0.007* 0.009** 0.003 0.004* 0.004** 0.002 0.004** 0.004*  
(1.97) (2.44) (1.56) (1.97) (2.33) (1.58) (2.02) (1.67) 

Capital adequacy 

ratio 
-0.065* 0.003 -0.020 0.015 -0.019* -0.018 0.008 0.001  
(-1.66) (0.17) (-0.90) (1.43) (-1.89) (-1.58) (0.44) (0.08) 

Profitability 0.761*** 0.426** 0.324*** 0.150 -0.149 -0.002 -0.121 -0.009  
(3.31) (2.15) (2.64) (1.36) (-1.13) (-0.03) (-1.03) (-0.06) 

Funding structure 0.002 0.023* -0.001 0.010 0.010*** 0.006** 0.005 -0.000  
(0.21) (1.72) (-0.34) (1.37) (2.71) (2.20) (1.21) (-0.04) 

GDP growth rate  -0.237***  -0.118***  -0.066***  -0.028  
 (-3.08)  (-3.13)  (-3.07)  (-1.26) 

Cash rate  0.269***  0.144***  0.001  -0.041***  
 (3.48)  (3.68)  (0.10)  (-2.67) 

Exchange rate 

change 
 -0.011  -0.005  -0.004  0.001  
 (-1.07)  (-0.90)  (-1.40)  (0.32) 

Housing price 

growth 
 0.006*  0.002  -0.006***  -0.000  
 (1.92)  (0.98)  (-5.10)  (-0.18) 

Adjusted R2 0.560 0.696 0.534 0.672 0.300 0.479 0.281 0.301 
Notes: The dependent variable is the semiannual aggregated ΔCoVaR𝒊𝒕. Model 1 includes only idiosyncratic bank-specific lagged variables. Model 2 includes both bank-specific 

and market-wide lagged variables. VaR is the lagged VaR. Size is the natural log of the book value of assets; Leverage is the ratio of total asset to book value of equity; Liquidity 

is the ratio of total loan to total deposit; Capital adequacy ratio is the ratio of tier I capital to risk-adjusted assets; Profitability is the return on asset; Funding structure is the ratio 

of total deposit to total asset;  GDP growth is the growth rate of constant dollar GDP; Cash rate is the RBA cash reserve rate; Exchange rate change is the change in exchange rate 

between the Australian dollar and the New Zealand dollar; and Housing price growth is the growth rate in Australia-DataStream Real Estate price index. Newey-West standard 

errors with up to 5 periods of autocorrelation are in parentheses. The symbols ***, **, and * indicate statistical significance at the 1%, 5%, and 10% level, respectively. 
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Figure 1 

Time-trends of VaR, CoVaR, and ΔCoVaR 
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Figure 2 

Time-frequency development of ΔCoVaR for different frequencies 
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