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A Brain-Focused Approach to the Equity Premium Puzzle 

 

The fact that human brain is a limited resource is generally acknowledged; however, the 

scarcity of brain resources is seldom explicitly taken into account in economics and finance 

literature.1 In this article, based on recent findings from brain sciences, we push the notion 

of scarcity inside the human brain and model the brain as solving two optimization 

problems instead of one, which are: (i) optimal resource allocation in the brain and (ii) 

expected utility maximization. We show that a new explanation for the equity premium 

puzzle emerges in the enriched framework, which also generates countercyclical equity 

premia as well as value and size effects. Hence, several anomalies in the standard 

framework are potentially reconciled in the enriched framework.  

 The equity premium puzzle (Mehra and Prescott 1985, Hansen and Jagannathan 

1991) has sparked a large literature in macro-finance that explores a wide range of 

alternative preferences and market structures in an attempt to explain the puzzle.2 In this 

article, we introduce a new approach to addressing the equity premium puzzle. This novel 

approach incorporates optimal resource allocation inside the human brain. One of the most 

intriguing findings from decision neuroscience is that the brain separately encodes reward 

and risk while evaluating a gamble (see the discussion in Bossaerts (2009))3. In addition, 

research in brain sciences has established that when the brain is engaged in multiple tasks 

then each task is assigned to a separate system of neurons with each system competing for 

scarce brain resources that are allocated by the ‘central executive system’ (CES) located in 

the lateral prefrontal cortex (see Alonso et al (2014) and references therein). It follows that 

 
1 McKenzie (2018) argues that a brain-focused approach could potentially lead to an integration of neoclassical 
and behavioral economics. Siddiqi and Murphy (2020) show that adjusting CAPM for optimal resource 
allocation in the brain provides a unified explanation for anomalies such as size, value, and momentum. 
2 A sample of this literature includes habits (Campbell and Cochrane 1999a, 1999b), recursive utility (Epstein 
and Zin 1989), long-run risks (Bansal and Yaron 2004, Bansal, Kiku, and Yaron 2012), idiosyncratic risk 
(Constantinides and Duffie 1996), heterogeneous preferences (Garleanu and Panageas 2015), rare disasters 
(Reitz 1989, Barro 2006), non-separable utility across goods (Piazzesi, Schneider, and Tuzel 2007), institutional 
finance (Brunnermeir 2009, Krishnamurthy and He 2013), ambiguity aversion (Hansen and Sargent 2001), and 
behavioral finance (Shiller 1981, 2014) among others. 
3 Expected reward is encoded in the subcortical projection areas of the dopamine neurons, in particular the 
ventral striatum, whereas brain regions involved in risk (variance) encoding include right and left insula, and 
thalamus 
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expected reward and risk are considered separate tasks in the brain with their own 

dedicated systems of neurons competing for scarce resources.  

Opening the black-box of brain processes yields further insights regarding 

information processing in a resource-rational brain. A key finding from neuroscience is that, 

when information reaches the brain, a brain template or schema is first activated, which 

influences information absorption.4 The schema provides starting points for relevant 

forecasts. Brain resources are then optimally allocated to adjusting these starting points 

(Lieder et al 2018, Lieder and Griffiths 2020) with resource allocation dependent on relative 

task importance and task complexity (Alonso et al 2014). In this framework, rational 

expectations correspond to a special case, which is achieved if sufficient brain resources are 

available. 

 In this article, we show that allowing for the possibility that sufficient brain resources 

may not be available changes the upper-bound on the Sharpe-ratio. This change is 

sufficiently large to explain the equity premium puzzle. The traditional bound is recovered 

when the resource constraint in the brain does not bind. The generalized upper-bound is 

countercyclical suggesting a potential explanation for the observed countercyclical equity 

premia as well (Cochrane 2017, Fama and French 1989). In addition, the cross-sectional 

variations in Sharpe-ratios are consistent with value and size effects.   

 This article is organized as follows. In section 1, we discuss neuroscience and 

cognitive science research on schemas and the role that they play in information processing. 

Section 2 adjusts asset pricing for reliance on schemas and shows how a unified explanation 

for high equity premia that are countercyclical as well as size and value effect emerges. 

Section 3 concludes with directions for future research.  

 

1. Resource-Rational Brain 

Research is decision-neuroscience has shown that, when information reaches the human 

brain, a brain-template or schema is first activated, which influences information 

 
4 See section 1 for a discussion of neuroscience evidence on schemas and their role in information processing 
in a resource-rational brain. 



4 
 

absorption.5 Schema is a cluster of related pieces of information stored in the brain. It 

provides a mental framework that facilitates processing of new information.6 The brain 

creates a schema by integrating similar experiences in an abstract representation or a 

generalization, which provides useful starting points for expectations. For example, when 

you see a dog in your neighbour’s front yard, then a schema of a pet (formed by prior 

experiences) may be activated. Such a schema provides useful starting points regarding 

what to expect in this situation. Brain resources are then spent in adjusting these starting 

points to the dog that you just encountered. For example, if the dog looks aggressive then 

the schema generated expectation of a friendly interaction may need to be amended. 

Schemas, because they provide useful starting points for expectations in a particular 

situation, are great economizing tools critically important for the resource-rational brain.7 It 

has been suggested in the literature that Autism is a condition associated with the break-

down in such schema creation, which overloads the brain, adversely affecting decision 

making. 8 

 We posit that the brain clusters similar firms together and creates a schema for the 

cluster based on experience with the firms in the cluster. Such experiences are integrated 

into an abstract representation or a generalization, which provides useful starting points for 

expectations. Limited brain resources are then optimally allocated to adjustment tasks 

based on relative task importance and task complexity.   

Neuroscience evidence establishes that the human brain separately encodes 

expected reward and risk (Bossaerts 2009, Fukunaga et al 2018 among others). Expected 

reward is encoded in the subcortical projection areas of the dopamine neurons, in particular 

the ventral striatum, whereas brain regions involved in risk (variance) encoding include right 

 
5 A sample of large and growing literature which explores the neural basis of schemas and their role in information 

absorption includes Tse et al (2007), van Kesteren et al (2010), Tse et al (2011), van Kesteren et al (2012), Ghosh and Gilboa 
(2014), Ghosh et al (2014), Brod et al (2015), Spalding et al (2015), Sweegers et al (2015), Gilboa and Marlatte(2017), and 
Ohki and Takei (2018). 
6 See Hampson and Morris (1996), Anderson (2000), and Pankin (2013) for an overview of schema theory in 
cognitive science literature. The concept of schemas goes back to the early history of cognitive science as a 
discipline of inquiry (Bartlett 1932, Bransford and Johnson 1972, Anderson and Pearson 1984). 
7 Brian imaging studies show that schemas lead to rapid assimilation of consistent information (see Tse et al 
2007, Gilboa and Marlatte 2017. See Ohki and Takei (2018) and references therein) 
8 See Patry and Horn (2019) for a review of this literature.  
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and left insula, and thalamus.9 The executive part of the brain then constructs value from 

the statistics of gambles (Bossaerts 2009).10 As discussed in Alonso et al (2014), research in 

brain sciences has established that when the brain is engaged in multiple tasks, then each 

task is assigned to a separate system of neurons. Such systems compete for scarce brain 

resources that are allocated by the ‘central executive system’ (CES) located in the lateral 

prefrontal cortex of the brain.  As reward and risk are encoded separately in the brain 

(Bossaerts 2009), it follows then these tasks are assigned to different systems of neurons 

that compete for scarce brain resources. A binding resource constraint implies that 

sufficient resources may not get allocated to one or both tasks. 

In the next section, we adjust the standard asset pricing model for optimal resource 

allocation of scarce resources in the brain.  

 

2. Asset Pricing 

We take the standard consumption-based asset pricing approach and add a twist to it: 

schema-creation. As standard, we assume that investor behavior is accounted for by a 

representative investor who maximizes utility over current and future consumption: 

𝑈(𝑐𝑡, 𝑐𝑡+1) = 𝑢(𝑐𝑡) + 𝛽𝐸𝑡[𝑢(𝑐𝑡+1)]                                                                                             (2.1) 

where 𝑐𝑡 is consumption at 𝑡.  

Using 𝑤𝑡 to denote investor wealth at 𝑡, 𝑝𝑖𝑡 to denote price of stock 𝑖 at 𝑡, 𝑛𝑖  for the number 

of shares of stock 𝑖 in the portfolio, and 𝑥𝑖𝑡+1 to denote the payoff from 𝑖 at 𝑡 + 1: 

𝑐𝑡 = 𝑤𝑡 − ∑ 𝑛𝑖𝑝𝑖𝑡

𝑖

 

𝑐𝑡+1 = 𝑤𝑡+1 + ∑ 𝑛𝑖𝑥𝑖𝑡+1

𝑖

 

 

 
9 There is some evidence that uncertainty in payoff distributions is processed by the brain in the same way as 
known risks through probability assessments/assignments (Nagel et al. 2018). 
10 The ventromedial prefrontal cortex is the area of the brain involved in carrying out an integrated valuation 
analysis of risk and return. 
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The above utility maximization results in the following key asset pricing equation: 

𝑝𝑖𝑡 = 𝐸𝑡 [𝛽
𝑢′(𝑐𝑡+1)

𝑢′(𝑐𝑡)
𝑥𝑖𝑡+1] = 𝐸𝑡[𝑀𝑡+1𝑥𝑖𝑡+1]                                                                              (2.2) 

where 𝑀𝑡+1 = 𝛽
𝑢′(𝑐𝑡+1)

𝑢′(𝑐𝑡)
 is the stochastic discount factor/marginal rate of substitution. If the 

gross risk-free return is 𝑅𝐹, then it follows that: 𝐸𝑡[𝑀𝑡+1] =
1

𝑅𝐹
 

(2.2) can be expanded as: 

𝑝𝑖𝑡 =
𝐸𝑡[𝑥𝑖𝑡+1]

𝑅𝐹
+ 𝐶𝑜𝑣𝑡(𝑀𝑡+1, 𝑥𝑖𝑡+1)                                                                                             (2.3) 

 

2.1 Schema Creation 

When information about a firm arrives, a relevant schema is activated. The schema provides 

starting points for expectations. Brain resources are then optimally allocated to the 

adjustment tasks by the CES based on relative task importance and task complexity. We 

follow Alonso et al (2014) and Siddiqi and Murphy (2020) in specifying the adjustment 

mechanism below. 

 We assume that the cashflow analysis has two tasks. The first task is estimating 

expected cashflows or earnings of the firm. We refer to this task as Task 1. The second task 

is estimating risk, which we denote by Task 2. For simplicity, all other tasks that the brain is 

performing at the time of analysis are aggregated together. We refer to this aggregate as 

Task 3. We assume that each task is assigned to a separate brain system (of neurons), which 

alone is responsible for the task. These systems make resource demands to the CES with 

task performance dependent on actual resources allocated to the system. That is, resource 

deficit implies underperformance in the task.  

A schema is created in the brain by integrating related experiences together into an 

abstract representation or a generalization. For a cluster of similar firms, 𝑙 = 1,2,3, … . , 𝐿, a 

schema, 𝑆, is created by integrating experiences with the firms in the cluster. A person may 

have more experience with some firms and less experience with other firms in the cluster; 

hence, the contributions from firms in the cluster to the schema are unlikely to be equal. To 
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account for such differences, we attention-weight or importance-weight contributions from 

various firms in the cluster. We denote these weights by 𝑣𝑙.  

We posit that the schema relevant for cashflow analysis is given by the following set: 

𝑆 = {𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑠, 𝑟𝑖𝑠𝑘} 

That is, the schema, 𝑆 , provides starting points for expectations regarding the following two 

attributes: earnings and risk.  

We use 𝜋𝑡+1
𝑖  to denote the cashflow or earnings level of firm 𝑖 at 𝑡 + 1. We denote 

the earnings expectations generated by the schema 𝑆 based on the information set 𝐼 by 

𝐸(𝜋𝑡+1|𝑆, 𝐼). Experience with a particular firm, 𝑙, shapes the schema based on the 

importance-weight, 𝑣𝑙, assigned to it by the brain. We take the simplest aggregation 

approach and set: 

𝐸(𝜋𝑡+1|𝑆, 𝐼) = ∑ 𝑣𝑙𝐸(𝜋𝑡+1
𝑙 | 𝐼)

𝑙∈𝑆

                                                                                                   (2.4) 

where 𝑣𝑙  are the importance-weights that satisfy ∑ 𝑣𝑙𝑙 = 1. Aggregation is done over the 

firms in the cluster. 

 Similarly, we define the risk expectations generated by the schema 𝑆 based on the 

information set 𝐼 by 𝐶𝑜𝑣((𝜋𝑡+1, 𝑀𝑡+1))|𝑆, 𝐼) where 𝑀𝑡+1 = 𝛽
𝑢′(𝑐𝑡+1)

𝑢′(𝑐𝑡)
 is the stochastic 

discount factor/marginal rate of substitution. 

𝐶𝑜𝑣((𝜋𝑡+1, 𝑀𝑡+1)|𝑆, 𝐼) = ∑ 𝑣𝑙𝐶𝑜𝑣 ((𝜋𝑡+1
𝑙 , 𝑀𝑡+1)|𝐼)𝑙∈𝑆                                                          (2.5)  

Hence, when information 𝐼 arrives, and schema 𝑆 is activated, the starting points for 

earnings and risk expectations are given in the following set: 

𝑆 = {𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑠, 𝑟𝑖𝑠𝑘} = {∑ 𝑣𝑙𝐸(𝜋𝑡+1
𝑙 | 𝐼)

𝑙∈𝑆

, ∑ 𝑣𝑙𝐶𝑜𝑣 ((𝜋𝑡+1
𝑙 , 𝑀𝑡+1)|𝐼)

𝑙∈𝑆

 }                        (2.6) 

Task 1 involves using the schema-generated forecast of earnings as a starting point 

and spending brain resources in an attempt to adjust it appropriately: 

𝐸′(𝜋𝑡+1
𝑖 |𝑆, 𝐼) = ∑ 𝑣𝑙𝐸(𝜋𝑡+1

𝑙 | 𝐼)

𝑙∈𝑆

− 𝑚1𝐷1                                                                                   (2.7) 
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where 𝐷1 = ∑ 𝑣𝑙𝐸(𝜋𝑡+1
𝑙 | 𝐼)𝑙∈𝑆 − 𝐸(𝜋𝑡+1

𝑖 |𝐼) is the correct adjustment needed, and 𝑚1 is the 

fraction of correct adjustment achieved.  

Similarly, Task 2 is: 

𝐶𝑜𝑣′ ((𝜋𝑡+1
𝑖 , 𝑀𝑡+1)|𝑆, 𝐼) = ∑ 𝑣𝑙𝐶𝑜𝑣 ((𝜋𝑡+1

𝑙 , 𝑀𝑡+1)|𝐼)

𝑙∈𝑆

− 𝑚2𝐷2                                         (2.8) 

where 𝐷2 =  ∑ 𝑣𝑙𝐶𝑜𝑣 ((𝜋𝑡+1
𝑙 , 𝑀𝑡+1)|𝐼)𝑙∈𝑆 − 𝐶𝑜𝑣 ((𝜋𝑡+1

𝑖 , 𝑀𝑡+1)|𝐼) is the correct adjustment 

needed, and 𝑚2 is the fraction of correct adjustment achieved. 

We follow Alonso et al (2014) and Siddiqi and Murphy (2020) in assuming that each 

system only cares about its own performance and demands resources from the CES. The 

resources that can be allocated to each system, 𝑠 ∈ {1, 2, 3}, are in the set ∅𝑠 = [0, 𝜑𝑠̅̅ ̅]. 

The amount of resources for perfect task completion is 𝜑𝑠 ∈ ∅𝑠. The amount of resources 

the CES allocates to a system is 𝑦𝑠. A system demands from the CES that it is allocated 𝑦𝑠 =

𝜑𝑠. We assume that there is a benefit function 𝜗𝑠(𝑦𝑠; 𝜑𝑠) associated with each task that the 

CES computes. The benefit function takes its maximum value when 𝑦𝑠 = 𝜑𝑠. When 𝑦𝑠 < 𝜑𝑠, 

there is a loss. When there are too many resources, 𝑦𝑠 > 𝜑𝑠, there is no benefit. It could 

even be damaging as too much attention could be counterproductive. In any case, we 

assume that the benefit function is non-increasing when 𝑦𝑠 ≥ 𝜑𝑠. 

As in Alonso et al (2014) and Siddiqi and Murphy (2020), we define the following 

benefit function (without loss of generality): 

 𝜗𝑠(𝑦𝑠; 𝜑𝑠) = {
𝛼𝑠𝑢𝑠(𝑦𝑠 − 𝜑𝑠)   𝑖𝑓 𝑦𝑠 ≤ 𝜑𝑠

0                        𝑖𝑓 𝑦𝑠 > 𝜑𝑠
                                                                                   (2.9) 

where 𝑢𝑠(0) = 0, 𝑢𝑠
′ (0) = 0, 𝑢𝑠

′ (𝑧) > 0, and 𝑢𝑠
′′(𝑧) < 0 for all 𝑧 < 0. 

(2.9) formalizes the idea that smaller the gap between resources needed and 

resources allocated, greater the benefit from the task.   

We define 𝑚1 and 𝑚2 as follows: 

𝑚1 =
𝑦1

𝜑1
                                                                                                                                             (2.10) 
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𝑚2 =
𝑦2

𝜑2
                                                                                                                                            (2.11) 

So, 𝑚1 and 𝑚2 are fractions of required resources allocated to Task 1 (earnings forecast) 

and Task 2 (risk forecast) respectively, which is taken to be the same as the fraction of 

correct adjustment without loss of generality. When sufficient resources are made available 

to a task by the CES, the adjustment task is perfectly completed leading to rational 

expectations.  However, when there is a resource shortfall, the adjustment process is 

affected in proportion with the deficit.  

  To set-up the optimization problem involving brain resources, we take the same 

approach as taken in Alonso et al (2014) and Siddiqi and Murphy (2020) and assume that 

the CES in the brain solves the following: 

𝑚𝑎𝑥

{𝑦1, 𝑦2, 𝑦3}
𝜗1(𝑦1; 𝜑1) +  𝜗2(𝑦2; 𝜑2) + 𝜗3(𝑦3; 𝜑3) 

   𝑠. 𝑡   𝑦1 + 𝑦2 + 𝑦3 ≤ 𝑘 

         𝑦1 ≥ 0, 𝑦2 ≥ 0, 𝑦3 ≥ 0 

We assume that the resource constraint in the brain is binding, that is: 

𝜑1 + 𝜑2 + 𝜑3 ≥ 𝑘 

We take the following simple quadratic benefit function to illustrate the solution: 

𝜗𝑠(𝑦𝑠; 𝜑𝑠) = −𝛼𝑠(𝑦𝑠 − 𝜑𝑠)2                                                                                                         (2.12) 

The interior solution is: 

𝑦𝑠 = 𝜑𝑠 −

1
𝛼𝑠

(
1

𝛼1
+

1
𝛼2

+
1

𝛼3
)

[𝜑1 + 𝜑2 + 𝜑3 − 𝑘]         𝑓𝑜𝑟 𝑠 ∈ {1, 2, 3}                              (2.13) 
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For Task 1 and Task 2, plugging (2.13) in (2.10) and (2.11) leads to: 

𝑚1 =

𝜑1 −

1
𝛼1

(
1

𝛼1
+

1
𝛼2

+
1

𝛼3
)

[𝜑1 + 𝜑2 + 𝜑3 − 𝑘]

𝜑1
                                                                   (2.14) 

𝑚2 =

𝜑2 −

1
𝛼2

(
1

𝛼1
+

1
𝛼2

+
1

𝛼3
)

[𝜑1 + 𝜑2 + 𝜑3 − 𝑘]

𝜑2
                                                                  (2.15) 

It is clear that more resources are allocated to a task if task importance, 𝛼𝑠, or the resources 

needed to successfully complete it (task complexity), 𝜑𝑠, go up.  

 From (2.7) (the conditional expectations notation is suppressed): 

𝐸′(𝜋𝑡+1
𝑖 ) = 𝐸(𝜋𝑡+1

𝑖 ) + (1 − 𝑚1) (∑ 𝑣𝑙𝐸(𝜋𝑡+1
𝑙 )

𝑙∈𝑆

− 𝐸(𝜋𝑡+1
𝑖 ))                                         (2.16) 

Denoting the P/E ratio or earnings multiplier of firm 𝑖 (inclusive of dividends) with 𝑐𝑖 and 

using 𝑐𝑙 to denote the P/E ratio of firm 𝑙: 

𝐸′(𝑒𝑡+1
𝑖 ) = 𝐸(𝑒𝑡+1

𝑖 ) + (1 − 𝑚1) (∑ 𝑣𝑙𝐸(𝑒𝑡+1
𝑙 )

𝑐𝑖

𝑐𝑙
𝑙∈𝑆

− 𝐸(𝑒𝑡+1
𝑖 )) 

where 𝑒𝑡+1
𝑖 = 𝑛𝑖

∗(𝑃𝑡+1+
𝑖 𝑑𝑡+1

𝑖 ) is the market value of total equity of 𝑖 with 𝑛𝑖
∗ being the 

number of shares of firm 𝑖 outstanding. It follows that: 

𝐸′(𝑃𝑡+1
𝑖 + 𝑑𝑡+1

𝑖 )

=  𝐸(𝑃𝑡+1
𝑖 + 𝑑𝑡+1

𝑖 )

+ (1 − 𝑚1) (∑ 𝑣𝑙𝐸(𝑃𝑡+1
𝑙 + 𝑑𝑡+1

𝑙 )
𝑛𝑙

∗𝑐𝑖

𝑛𝑖
∗𝑐𝑙

𝑙∈𝑆

− 𝐸(𝑃𝑡+1
𝑖 + 𝑑𝑡+1

𝑖 ))                  (2.17) 
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Similarly, for risk: 

𝐶𝑜𝑣′(𝑃𝑡+1
𝑖 + 𝑑𝑡+1

𝑖 , 𝑀𝑡+1)

=  𝐶𝑜𝑣(𝑃𝑡+1
𝑖 + 𝑑𝑡+1

𝑖 , 𝑀𝑡+1)

+ (1 − 𝑚2) (∑ 𝑣𝑙𝐶𝑜𝑣(𝑃𝑡+1
𝑙 + 𝑑𝑡+1

𝑙 , 𝑀𝑡+1)
𝑛𝑙

∗𝑐𝑖

𝑛𝑖
∗𝑐𝑙

𝑙∈𝑆

− 𝐶𝑜𝑣(𝑃𝑡+1
𝑖 + 𝑑𝑡+1

𝑖 , 𝑀𝑡+1))                                                                            (2.18) 

where the aggregate market payoff, 𝑋𝑡+1
𝑀 = 𝑛1

∗(𝑃𝑡+1
1 + 𝑑𝑡+1

1 ) + 𝑛2
∗ (𝑃𝑡+1

2 + 𝑑𝑡+1
2 ) +∙∙∙∙∙∙∙∙∙∙∙∙

+𝑛𝑍
∗ (𝑃𝑡+1

𝑍 + 𝑑𝑡+1
𝑍 ), with 𝑚1 and 𝑚2 given in (2.14) and (2.15) respectively.  

 

2.2 Generalized Asset Pricing Model 

Forecasting cashflow levels and the risk of cashflows are considered separate tasks in the 

brain. That is. These tasks are assigned to distinct systems of neurons. Each system demands 

resources which are allocated by the CES. The optimal resource allocation across the tasks 

depends on relative task importance and task complexity. The brain solves this problem as 

well as the problem of allocating finite wealth across assets (expected utility maximization). 

The general solution to the resource allocation in the brain problem is discussed in the last 

section. Here, we use this solution as an input in the expected utility maximization problem 

facing the representative investor. 

Given the focus of investors on earnings news (Basu et al 2013) and the complexity 

of earnings or cashflow forecasting, we assume that importance assigned to the cashflow 

forecast by the CES is larger and more resources are needed for successful completion of 

the cashflow forecasting task. That is, 𝛼1 > 𝛼2 and 𝜑1 > 𝜑2. From (2.14) and (2.15), it 

follows that this increases the brain resources allocated to cashflow forecast and reduces 

the resources allocated to the risk forecast. Based on such considerations, we posit that 

typically 𝑚1~1 and 𝑚2 < 1 in the real world. We analyse this case here. For completeness, 
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the discussion of the general case where both 𝑚1 and 𝑚2  are less than 1 is presented in the 

appendix.  

 Substituting (2.18) in (2.3) (and setting 𝑐𝑖~𝑐𝑙, that is, firms in the same cluster have 

similar P/E ratios) leads to: 

𝑝𝑖𝑡 =
𝐸𝑡[𝑃𝑡+1

𝑖 + 𝑑𝑡+1
𝑖 ]

𝑅𝐹
+  𝐶𝑜𝑣(𝑃𝑡+1

𝑖 + 𝑑𝑡+1
𝑖 , 𝑀𝑡+1)

+ (1 − 𝑚2) (∑ 𝑣𝑙𝐶𝑜𝑣(𝑃𝑡+1
𝑙 + 𝑑𝑡+1

𝑙 , 𝑀𝑡+1)
𝑛𝑙

∗

𝑛𝑖
∗

𝑙∈𝑆

− 𝐶𝑜𝑣(𝑃𝑡+1
𝑖 + 𝑑𝑡+1

𝑖 , 𝑀𝑡+1)) 

                                                                                                                                                              (2.19) 

Multiplying (2.19) with 𝑛𝑖
∗, adding across all stocks, and assuming that there are 𝑄 clusters in 

the market with 𝐿 firms in each cluster: 

𝑝𝑀𝑡 =
𝐸𝑡[𝑋𝑀𝑡+1]

𝑅𝐹
+  𝐶𝑜𝑣(𝑋𝑀𝑡+1, 𝑀𝑡+1)

+ (1

− 𝑚2) [∑ ∑ (∑ 𝑣𝑙𝐶𝑜𝑣(𝑃𝑡+1
𝑙 + 𝑑𝑡+1

𝑙 , 𝑀𝑡+1)𝑛𝑙
∗

𝑙∈𝑆𝐿𝑄

− 𝐶𝑜𝑣(𝑃𝑡+1
𝑖 + 𝑑𝑡+1

𝑖 , 𝑀𝑡+1)𝑛𝑖
∗)]                                                                       (2.20) 

where the aggregate market payoff is 𝑋𝑡+1
𝑀 = 𝑛1

∗(𝑃𝑡+1
1 + 𝑑𝑡+1

1 ) + 𝑛2
∗ (𝑃𝑡+1

2 + 𝑑𝑡+1
2 ) +∙∙∙∙∙∙∙∙∙∙∙∙

+𝑛𝑀
∗ (𝑃𝑡+1

𝑆 + 𝑑𝑡+1
𝑆 ) 

Re-arranging (2.20), and simplifying by setting all correlations with the SDF to -111,  

𝐸[𝑅𝑡+1
𝑀 ] − 𝑅𝐹

𝜎(𝑅𝑡+1
𝑀 )

=
𝜎(𝑀𝑡+1)

𝐸(𝑀𝑡+1)
× 𝑓                                                                                                      (2.21) 

where 𝐸[𝑅𝑡+1
𝑀 ] is the expected return on the aggregate market and     

 
11 This assumption simplifies the math considerably without any implications for subsequent analysis. For 
completeness, the model is derived with correlation coefficients allowed to be different than -1 in the 
appendix.   
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𝑓 = [1 + (1 − 𝑚2) [∑ ∑ (
∑ 𝑣𝑙𝜎(𝑅𝑡+1

𝑙 )𝑙∈𝑆 𝑤𝑙

𝜎(𝑅𝑡+1
𝑀 )

−
𝜎(𝑅𝑡+1

𝑖 )𝑤𝑖

𝜎(𝑅𝑡+1
𝑀 )

)

𝐿𝑄

]]                                  (2.21𝑎) 

𝜎(𝑅𝑡+1
𝑙 ), 𝜎(𝑅𝑡+1

𝑖 ), 𝜎(𝑅𝑡+1
𝑀 ) are return standard deviations of 𝑙, 𝑖, and aggregate market 

respectively, 𝑤𝑙 =
𝑛𝑙

∗𝑃𝑙𝑡

𝑝𝑀𝑡
 (weight of firm 𝑙 in the aggregate market portfolio), and 𝑤𝑖 =

𝑛𝑖
∗𝑃𝑖𝑡

𝑝𝑀𝑡
 

(weight of firm 𝑖 in the aggregate market portfolio). Recall that 𝑣𝑙  is the importance-weight 

assigned to firm 𝑙 in the schema of that particular cluster.  

 (2.21) differs from the standard Sharpe-ratio expression due to the appearance of a 

multiplicative term 𝑓. This multiplicative term converges to 1 if the resource constraint in 

the brain does not bind, that is, when 𝑚2 = 1.  

 Investor and analyst attention is highly asymmetric with most of the time spent on 

high market capitalization firms (Fang and Peress 2009). This asymmetry implies that a 

schema of the cluster is likely to be weighted towards such firms. That is, in a cluster of 

similar firms, the importance-weights, 𝑣𝑙, are larger for large market-cap firms when 

compared with small market-cap firms. With this in mind, we assume that 𝑣𝑙  scales with 𝑤𝑙. 

For simplicity, we set 𝑣𝑙 =
𝑤𝑙

∑ 𝑤𝑙𝑙∈𝑆
. It follows that ∑ (

∑ 𝑣𝑙𝜎(𝑅𝑡+1
𝑙 )𝑙∈𝑆 𝑤𝑙

𝜎(𝑅𝑡+1
𝑀 )

−
𝜎(𝑅𝑡+1

𝑖 )𝑤𝑖

𝜎(𝑅𝑡+1
𝑀 )

)𝐿 > 0. This 

implies that 𝑓 > 1 if 𝑚2 < 1. Proposition 1 follows. 

 

Proposition 1 (Sharpe-Ratio Upper Bound) When the brain resources allocated to risk 

forecasting are less than the resources needed for successful task completion, the upper-

bound on the equity Sharpe-ratio rises by a factor 𝒇 which is greater than 1. The factor 𝒇 is 

given as follows: 

𝒇 = [𝟏 + (𝟏 − 𝒎𝟐) [∑ ∑ (
∑ 𝒗𝒍𝝈(𝑹𝒕+𝟏

𝒍 )𝒍∈𝑺 𝒘𝒍

𝝈(𝑹𝒕+𝟏
𝑴 )

−
𝝈(𝑹𝒕+𝟏

𝒊 )𝒘𝒊

𝝈(𝑹𝒕+𝟏
𝑴 )

)

𝑳𝑸

]] 

Corollary 1.1 If the resource constraint in the brain does not bind, that is, if 𝒎𝟐 = 𝟏, then 

the standard Sharpe-ratio upper bound is recovered.  
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2.3 The Equity Premium Puzzle 

How large is the multiplicative term 𝑓? The multiplicative term 𝑓 in (2.21) is expected to be 

substantially larger than 1.  

 To get an idea about how large 𝑓 is expected to be, consider the technology 

companies included in the ASX-200 (Australian Stock Market) index over a period ranging 

from 6th November 2019 to 6th November 2020. A total of 7 such technology companies 

have data available (Yahoo Finance) over the period considered. We calculate standard 

deviation of daily returns for each firm over this period and annualize them by multiplying 

with √250. We calculate market value weights for each firm as on Nov. 6, 2020. We assume 

that these firms belong to the same cluster with the importance-weight, 𝑣𝑙, increasing with 

the weight in the aggregate market in the following way: 𝑣𝑙 =
𝑤𝑙

∑ 𝑤𝑙𝑙
. That is, we set the 

importance-weight of a firm to be equal to the weight of the firm in the aggregate market 

divided by the weight of the cluster in the aggregate market. Table 1 shows return standard 

deviations, weights, and importance-weights of firms in the cluster.  

 We take return standard deviation of the aggregate market, 𝜎(𝑅𝑡+1
𝑀 ), to be 0.16, 

which is standard in much of the literature (Cochrane 2017). With these values: 

∑ (
∑ 𝑣𝑙𝜎(𝑅𝑡+1

𝑙 )𝑙∈𝑆 𝑤𝑙

𝜎(𝑅𝑡+1
𝑀 )

−
𝜎(𝑅𝑡+1

𝑖 )𝑤𝑖

𝜎(𝑅𝑡+1
𝑀 )

)

7

= 0.007 

There are roughly 2100 firms listed in the Australian Stock Exchange, so with a cluster size of 

7 firms, there are approximately 300 clusters. It follows that: 

∑ ∑ (
∑ 𝑣𝑙𝜎(𝑅𝑡+1

𝑙 )𝑙∈𝑆 𝑤𝑙

𝜎(𝑅𝑡+1
𝑀 )

−
𝜎(𝑅𝑡+1

𝑖 )𝑤𝑖

𝜎(𝑅𝑡+1
𝑀 )

) = 2.1

7300

 

Setting 𝑚2 = 0.1, it follows that: 

𝑓 = [1 + (1 − 0.1) [∑ ∑ (
∑ 𝑣𝑙𝜎(𝑅𝑡+1

𝑙 )𝑙∈𝑆 𝑤𝑙

𝜎(𝑅𝑡+1
𝑀 )

−
𝜎(𝑅𝑡+1

𝑖 )𝑤𝑖

𝜎(𝑅𝑡+1
𝑀 )

)

7300

]] = 2.9 
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Table 1 

 

Table 1: For technology companies included in the ASX 200 index, standard deviations of 

daily returns are calculated (and annualized by multiplying with √250) based on Yahoo 
Finance data for the period ranging from Nov. 6, 2019 to Nov. 6, 2020. Market value weights 
are calculated by dividing the total market-cap of the firm with the aggregate market 
capitalization as on Nov. 6, 2020.  Importance-Weights are calculated by dividing the firm 
weight with the total cluster weight.  

 

Historical equity premium has been between 4% to 8% with a standard deviation of around 

16% on average. Using 6% as the equity premium, the left-hand-side of (2.21) is 0.375. 

Assuming power utility, and as standard practice, assuming lognormal consumption growth, 

it follows that:  

𝜎(𝑀𝑡+1)

𝐸[𝑀𝑡+1]
≈ 𝛾𝜎(∆𝑙𝑛𝑐) 

where 𝛾 is the coefficient of risk-aversion. 

In the post war data, aggregate consumption growth has been around 2%. Plugging these in 

(2.21): 

0.375 = 𝛾0.02𝑓                                                                                                                             (2.22) 

Plugging 𝑓 = 2.9, leads to: 

𝛾 = 6.47 

In the above example, we have been quite conservative in estimating importance-weights 

with each firm in the cluster contributing to the schema based on its market cap. Instead, if 

we assume that only the top two firms by market-cap contribute to the schema of the 

cluster at 50% each, then 𝑓 = 6.14, which implies that 𝛾 = 3.05. In other words, with 

Weight Importance -Weight Standard Deviation of Returns

Computershare Limited 0.0035 0.23 42.60%

NEXTDC Limited 0.0031 0.20 40.20%

Carsales.com Limited 0.0027 0.17 44.60%

Altium Limited 0.0025 0.16 41.80%

Technology One Limited 0.0015 0.09 38.40%

Link Adminstration Holdings Limited 0.0013 0.08 53.80%

IRESS Limited 0.0010 0.06 35.60%

Total Cluster Weight 0.0155 1
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reasonable assumptions regarding bigger contributions of larger market-cap firms to the 

cluster schema, 𝑓 is substantially larger than 1, which lowers the risk-aversion needed to 

reconcile data with asset pricing theory.  

 

2.4 The Size and Value Effects 

Re-arranging (2.19) so that the Sharpe-ratio of stock 𝑖 is on L.H.S: 

𝐸(𝑅𝑡+1
𝑖 ) − 𝑅𝐹

𝜎(𝑅𝑡+1
𝑖 )

= −𝜌𝑖

𝜎(𝑀𝑡+1)

𝐸[𝑀𝑡+1]
{1 + (1 − 𝑚2) (

∑ 𝑣𝑙𝜎(𝑅𝑡+1
𝑙 )𝑤𝑙𝜌𝑙𝑙∈𝑆

𝜎(𝑅𝑡+1
𝑖 )𝑤𝑖𝜌𝑖

− 1)}                  (2.23) 

where 𝑤𝑙, 𝑤𝑖 are market capitalizations of 𝑙 and 𝑖 respectively, and 𝜌𝑙, 𝜌𝑖  are correlations of 

𝑙 and 𝑖 with the SDF.  

 It is immediately clear from (2.23) that small market-cap firms have larger Sharpe-

ratios as 𝑤𝑖 appears in the denominator of R.H.S. Proposition 2 follows. 

 

Proposition 2 (The Size Effect) Small market-cap firms have larger Sharpe-Ratios than 

large market-cap firms if the resource constraint in the brain binds.  

Proof. 

From (2.23): 

𝜕(𝑆ℎ𝑎𝑟𝑝𝑒 𝑅𝑎𝑡𝑖𝑜)

𝜕𝑤𝑖
= 𝜌𝑖

𝜎(𝑀𝑡+1)

𝐸[𝑀𝑡+1]
{(1 − 𝑚2) (

∑ 𝑣𝑙𝜎(𝑅𝑡+1
𝑙 )𝑤𝑙𝜌𝑙𝑙∈𝑆

𝜎(𝑅𝑡+1
𝑖 )𝑤𝑖

2
𝑖
𝜌𝑖

)} 

The above is negative if the correlation of returns with the SDF, 𝜌𝑖, is negative as commonly 

assumed in the literature 

▪ 

 

Just like the cross-sectional size effect, a cross-sectional value effect also arises from (2.23). 

Consider two stocks with identical fundamentals except that they have different schemas, 𝑆 

and 𝑆′. Assume that  ∑ 𝑣𝑙𝜎(𝑅𝑡+1
𝑙 )𝑤𝑙𝜌𝑙𝑙∈𝑆 > ∑ 𝑣𝑙𝜎(𝑅𝑡+1

𝑙 )𝑤𝑙𝜌𝑙𝑙∈𝑆′ .  It follows that stock with 
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schema 𝑆 is cheaper than stock with schema 𝑆′and has a higher Sharpe-ratio. Proposition 3 

follows. 

 

Proposition 3 (The Value Effect) A stock with a schema having higher risk is cheaper and 

has a higher Sharpe-ratio than an identical stock with a schema having lower risk.  

 

It matters which cluster a firm belongs to. Two firms could be very similar expect for the fact 

that one belongs to a cluster with higher risk. Such a stock is the value stock in this 

framework. 

 

2.5 Countercyclical Equity Premia 

Empirical evidence shows that the equity risk premium is countercyclical. For example, 

Harvey (1989) showed that US equity risk premia are higher at business cycle troughs than 

they are at peaks. Similar results are reported in Bekaert and Harvey (1995), He, Kan, Ng and 

Zhang (1996) and Li (2001) among others.  

  Crouzet and Mehrotra (2020) show that large firms are less sensitive to the business 

cycle fluctuations than small firms. In particular, they find that a 1% drop in GDP is 

associated with a 2.5% drop in sales at the top 1% of firms and a 3.1% drop in sales in the 

bottom 99% of firms. With the notion of scarcity pushed inside the human brain, a key 

implication of large firms being less cyclically sensitive is the countercyclical Sharpe-ratio of 

the aggregate market as explained below.  

As large firms are expected to dominate (or at the very least have a bigger impact 

on) schemas in their respective clusters, less cyclical sensitivity of such firms makes the 

schema-generated starting points less cyclically sensitive as well when compared with the 

actual earnings of a typical firm. That is, ∑ 𝑣𝑙𝐶𝑜𝑣 ((𝜋𝑡+1
𝑙 , 𝑀𝑡+1)|𝐼)𝑙∈𝑆  is less cyclically 

sensitive than 𝐶𝑜𝑣 ((𝜋𝑡+1
𝑖 , 𝑀𝑡+1)|𝐼). So, the difference between 

∑ 𝑣𝑙𝐶𝑜𝑣 ((𝜋𝑡+1
𝑙 , 𝑀𝑡+1)|𝐼)𝑙∈𝑆  and 𝐶𝑜𝑣 ((𝜋𝑡+1

𝑖 , 𝑀𝑡+1)|𝐼) is largest at the bottom (trough) of a 
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recession and smallest at the top of an expansion. In other words, the schema-generated 

forecast or starting point is most accurate at the top of an expansion (requiring less brain 

resources to fully adjust) and least accurate at the bottom of a recession (requiring more 

brain resources to fully adjust). This makes {∑ 𝑣𝑙𝐶𝑜𝑣 ((𝜋𝑡+1
𝑙 , 𝑀𝑡+1)|𝐼)𝑙∈𝑆 −

𝐶𝑜𝑣 ((𝜋𝑡+1
𝑖 , 𝑀𝑡+1)|𝐼)} counter-cyclical. It is straightforward to see that if 

{∑ 𝑣𝑙𝐶𝑜𝑣 ((𝜋𝑡+1
𝑙 , 𝑀𝑡+1)|𝐼)𝑙∈𝑆 − 𝐶𝑜𝑣 ((𝜋𝑡+1

𝑖 , 𝑀𝑡+1)|𝐼)} is counter-cyclical then 𝑓 is counter-

cyclical as well. Proposition 4 directly follows. 

 

Proposition 4 (Countercyclical Equity Premia) Sharpe-Ratio of the aggregate market is 

countercyclical.  

 

3. Conclusions and Discussion 

Human brain is the ultimate scarce, efficient, and rational resource that first must optimize 

on itself before optimizing on the resources available in the external world. In this article, 

we adjust the standard asset pricing theory for optimal resource allocation of scarce 

resources in the brain. Intriguingly, a unified explanation for a diverse range of asset pricing 

anomalies (associated with the standard framework) emerges in the enriched framework.  

While there may be other theories that can individually explain the equity premium 

puzzle (to an extent) and other effects by enriching the framework in a certain way, the 

model developed in this paper addresses all such “anomalies” within a single framework 

grounded in neuroscience and the actual functioning processes of the human brain. 

One of the most striking implications of pushing the notion of scarcity inside the 

human brain is that the resulting enrichment is quite simple yet very powerful in its ability 

to explain a diverse range of phenomena. By pushing the notion of scarcity inside the 

human brain, Siddiqi and Murphy (2020) propose an enrichment of the standard CAPM 

framework. In this article, we use the same approach to propose an enrichment of the 

standard consumption-based asset pricing model. A natural task for future research is to see 
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what other insights can be discovered by pushing this approach further and in other areas 

such as option pricing.  
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Appendix 

 

Substituting (2.17) and (2.18) in (2.3) and re-arranging (while assuming that 𝑐𝑖~𝑐𝑙, that is, 

firms in the same cluster have similar P/E ratios): 

𝐸[𝑅𝑡+1
𝑀 ] × 𝑔 − 𝑅𝐹

𝜎(𝑅𝑡+1
𝑀 )

= −𝜌𝑀

𝜎(𝑀𝑡+1)

𝐸(𝑀𝑡+1)
× 𝑓                                                                                       (𝐴1) 

where: 

𝜌𝑀 is the correlation between the aggregate market return and the SDF 

𝑔 = [1 + (1 − 𝑚1) ∑ ∑ (
∑ 𝑣𝑙𝐸(𝑅𝑡+1

𝑙 )𝑤𝑙𝑙∈𝑆

𝐸(𝑅𝑡+1
𝑀 )

−
𝐸(𝑅𝑡+1

𝑖 )𝑤𝑖

𝐸(𝑅𝑡+1
𝑀 )

)

𝐿𝑄

]                                           (𝐴2) 

𝑓 = [1 + (1 − 𝑚2) [∑ ∑ (
∑ 𝑣𝑙𝜎(𝑅𝑡+1

𝑙 )𝑙∈𝑆 𝑤𝑙𝜌𝑙

𝜎(𝑅𝑡+1
𝑀 )𝜌𝑀

−
𝜎(𝑅𝑡+1

𝑖 )𝑤𝑖𝜌𝑖

𝜎(𝑅𝑡+1
𝑀 )𝜌𝑀

)

𝐿𝑄

]]                               (𝐴3) 

𝜌𝑙  and 𝜌𝑖  are correlations of firm 𝑙 and firm 𝑖’s returns with the SDF respectively.  

(A1) converges to the standard Sharpe-ratio expression when the resource constraint in the 

brain does not bind, that is, when 𝑚1 = 𝑚2 = 1. Given that most of investor and analyst 

time is spent on cashflow or earnings forecast, the relative importance and complexity of 

the brain task of developing earnings forecast are larger. From (2.14) and (2.15), it follows 

that 𝑚1 > 𝑚2 with 𝑚1~1. This is the case which is discussed in the main body of the article.  

 


