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Executive Summary 
The Diversification Return has long been supposed to represent the incremental return associated with portfolios that are 
regularly rebalanced compared to those that are not. In this paper, we test the hypothesis that it can be correctly 
associated with a “rebalancing premium” for various factor portfolios. We then go on to determine how much of the 
excess return of these factor portfolios may be attributed to the diversification return, and therefore whether or not, a 
traditional factor-based explanation of their performance is more appropriate. 
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1. Introduction 
The notion of “diversification return” has been widely discussed by academics and practitioners over the years [1, 2, 3, 4, 
5, 6]. The consensus is that it represents the incremental return associated with portfolios that are regularly rebalanced, 
compared to those that are not, and consequently, it is often referred to as the “rebalancing premium.” 

The idea first surfaced with Fernholz and Shay [1], who used the methods of Stochastic Portfolio Theory to derive an 
expression for the log-return of a rebalanced portfolio, in terms of the weighted average of individual stock log-returns and 
an “excess growth rate.” Later, Booth and Fama [2] provided an independent derivation of this relationship and 
furthermore coined the term “diversification return” for the contribution they attributed to the benefits of portfolio 
diversification. Both sets of researchers express the diversification return as half the difference between the weighted 
average stock volatility of the portfolio’s constituents and the portfolio’s volatility. Hence its contribution is positive and can 
be readily interpreted as arising from the risk reduction benefit of holding a portfolio rather than individual stocks. 

The derived relationship is elegant, but not universal, as it requires that a portfolio is rebalanced back to a constant 
(unchanging) set of portfolio weights. This is quite a restrictive condition as, in most cases, portfolio weights will vary from 
rebalance to rebalance (for example, to counter decaying factor exposures, or to reduce portfolio risk under changing 
market conditions). This, however, has not prevented subsequent attempts to widen the scope of the relationship and to 
draw conclusions about how rebalancing and diversification relates to the return of more general portfolios [5]. Indeed, the 
concept has even been applied to several smart beta portfolios, leading to the conclusion that the diversification return is 
the sole source of their excess return [3, 4]. 

To evaluate the true nature of the diversification return and its role in the performance of factor portfolios, we will construct 
portfolios that strictly adhere to the conditions under which the diversification return has previously been specified. That is, 
we will construct portfolios that are regularly rebalanced back to the same set of weights and then examine whether their 
performance properties are in line with expectations. It is instructive to compare these rebalanced portfolios to the 
equivalent non-rebalanced portfolios; this allows us to tease out the effect of rebalancing and address the question 
whether rebalancing is always advantageous. In order to fully realize this comparison, we extend the definition of 
diversification return to one that is applicable to the non-rebalanced portfolios. Furthermore, we will examine how 
significant a contribution of the diversification return is to our portfolios’ performance, and compare it to other more 
traditional sources of excess return.  

The structure of this note is as follows. In Section 2, we present a definition of the “diversification return” that may be 
applied to both rebalanced and non-rebalanced portfolios. Using this as a starting point, we also derive an approximate 
result, which we believe is the basis for the widespread belief that “rebalancing is best.” In Section 3, we construct several 
simple factor portfolios that rebalance back to fixed weights, and compare their performance to equivalent non-rebalanced 
portfolios. In Section 4, we decompose the geometric return of our rebalanced portfolios into the diversification return and 
the weighted average stock geometric return (or “strategic return”). We apply this decomposition to determine the 
dominant contributor to each portfolio’s absolute and relative returns and specify how this relates back to the factor 
exposure of our portfolios. In Section 5, we draw our conclusions. 
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2. A general definition of diversification return  
Fernholz and Shay’s formula for the diversification return is derived for a portfolio that is regularly rebalanced back to a 
fixed set of weights. In this section, we will propose an alternative definition that may be applied to more general 
portfolios, irrespective of whether they are rebalanced or not. The advantage of employing this broader definition is that it 
will allow us to compare the diversification return of rebalanced with non-rebalanced portfolios in section 3. Importantly, 
we show that for portfolios that are rebalanced back to a fixed set of weights, this more general expression reduces to 
Fernholz and Shay’s formula. To arrive at this general definition of diversification return, we briefly review the definitions of 
geometric mean return, arithmetic mean return and the relationship between them. 

Consider a time series of returns to a stock or portfolio. Given the set of time periods 𝑡𝑡 = 0, 1, … ,𝑇𝑇, we can define the 
geometric mean return of a portfolio (stock) by: 

 

 𝑔𝑔 = �(1 + 𝑟𝑟1) × (1 + 𝑟𝑟2) × … × (1 + 𝑟𝑟𝑇𝑇)𝑇𝑇 − 1 (1) 

 

where 𝑟𝑟𝑡𝑡 is the return of the portfolio (stock) over the 𝑡𝑡𝑡𝑡ℎ time period. The arithmetic mean return is: 

 

 𝑟̅𝑟 =
1
𝑇𝑇

(𝑟𝑟1 + 𝑟𝑟2 + ⋯+ 𝑟𝑟𝑇𝑇)    (2) 

 

A useful approximate relationship [2, 7] exists between these two quantities: 

 

 𝑔𝑔 ≈ 𝑟̅𝑟 −  𝜎𝜎2/2 (3) 

 

where 𝜎𝜎 is the volatility of the returns. In other words, the geometric mean return is expected to be smaller than the 
arithmetic mean return by half the value of the volatility of the returns. 

In line with several authors [5, 7], we define the diversification return (𝐷𝐷𝐷𝐷) of any portfolio, irrespective of whether it is 
rebalanced back to its original weights or not, as the difference between the geometric mean return of the portfolio 𝐺𝐺𝑃𝑃 and 
a weighted average of the geometric mean returns of individual stocks 𝑔𝑔𝑖𝑖. That is: 

 

 𝐷𝐷𝐷𝐷 = 𝐺𝐺𝑃𝑃 −�𝑊𝑊𝑖𝑖 ∗ 𝑔𝑔𝑖𝑖

𝑁𝑁

𝑖𝑖=1

 (4) 

where 𝑊𝑊𝑖𝑖 are a suitably defined set of individual stock weights. The subtracted term is often referred to as the “Strategic 
Return”.  
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This definition of diversification return is clearly at odds with the idea that rebalancing is a necessary condition for the 
diversification return to exist. Indeed, some authors have argued that “true” diversification return results from the selling of 
stocks that have gained in weight and buying those that have reduced in weight in a way that is natural in the rebalancing 
process [6]. We take a practical view that since it can be defined and measured for both rebalanced and non-rebalanced 
portfolios, then a comparison can be legitimately made, regardless of any difference in the “return mechanics,” explaining 
each type of portfolio’s performance. 

However, an ambiguity remains in this definition for portfolios, whose weights are not held constant at the beginning of 
each time period; whether this is achieved by actively rebalancing back to the set of weights defined at 𝑡𝑡 = 0, or simply 
through fortunate price movements. Such a portfolio’s weights will, in general, differ from the initial set of weights, 
because of price drift, portfolio additions and deletions or simply through rebalancing to some other distinct set of weights. 
What set of weights should be used in this case? 

Some authors [7] have addressed this problem by proposing that an average of changing, or drifting weights, should be 
used in (4). For our purposes however, we will restrict our attention to portfolios rebalanced to fixed weights or else 
portfolios that are not rebalanced and lack stock additions or deletions. In either case, the initial set of weights at 𝑡𝑡 = 0 can 
be used for the weights 𝑊𝑊𝑖𝑖 in equation (4). 

As a mere definition, equation (4) is not very enlightening as a characterization of portfolio performance. However, it is 
possible to show that this expression reduces to the formulae of Fernholz and Shay [1] and Booth and Fama [2] in the 
case of a portfolio that is rebalanced to a fixed set of weights. Instead of reproducing their analysis, we will follow 
Willenbrock [6], whose analysis leads directly to an estimate for equation (4) in terms stock and portfolio level volatility. 

For portfolios rebalanced to a fixed set of weights, Willenbrock notes that their arithmetic mean return is exactly equal to a 
weighted average of the arithmetic mean returns of the individual stocks (see Appendix), that is: 

 

 𝑅𝑅�𝑃𝑃 = �𝑊𝑊𝑖𝑖 ∗ 𝑟̅𝑟𝑖𝑖

𝑁𝑁

𝑖𝑖=1

 (5) 

 
Through equation (3), both the portfolio and stock arithmetic mean returns in equation (5) can be expressed the sum of 
the geometric mean return plus the half the volatility, so that:  
 

 𝐺𝐺𝑃𝑃 +
1
2
𝜎𝜎𝑃𝑃2 ≈�𝑊𝑊𝑖𝑖 ∗ (𝑔𝑔𝑖𝑖 +

1
2

𝑁𝑁

𝑖𝑖=1

𝜎𝜎𝑖𝑖2) (6) 

 
where 𝜎𝜎𝑖𝑖 are individual stock volatilities and 𝜎𝜎𝑃𝑃 is the portfolio volatility. Rearranging equation (6) leads directly the 
following approximate expression for the diversification return: 

 

 𝐷𝐷𝐷𝐷 ≈
1
2
��𝑊𝑊𝑖𝑖

𝑁𝑁

𝑖𝑖=1

∗ 𝜎𝜎𝑖𝑖2 − 𝜎𝜎𝑃𝑃2� (7) 

This is precisely Fernholz and Shay’s expression. It has been interpreted by many authors as expressing the benefits of 
diversification, since it represents the difference between the weighted average of individual stock volatilities and the 
portfolio volatility. This is also expected to be positive, since a portfolio’s volatility will be on average lower than that of its 
constituent stocks [7]. 

In the case of a non-rebalanced portfolio, we can show that the general definition for the diversification return given by 
equation (4) is also positive using Jensen’s inequality [11]. Hence, rebalancing is not necessary to earn a positive 
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diversification return, at least as it has been defined here. Notwithstanding this, one may still ask how does it compare in 
magnitude to that of the rebalanced portfolio estimate given by equation (7)? 

By way of an answer, we note that, although equation (5) is not strictly satisfied by the non-rebalanced portfolio, it may still 
approximately hold true. This would clearly be the case whenever the portfolio weights do not drift too far from their initial 
values. Hence, for suitably diverse portfolios, and during “normal” market conditions, equation (7) should also provide a 
reasonable estimate of the diversification return of both a rebalanced and non-rebalanced portfolio. 

This reasoning would seem to undermine the argument deployed by some authors, that rebalancing tends to improve 
long-term returns [8]. However, if we could prove that equation (7) represents an upper bound to the diversification return 
of a non-rebalanced portfolio, then we could conclude that rebalancing is always advantageous. We are not aware of such 
a theoretical proof, so instead we will test this empirically in Section 3. 

3. Rebalanced versus non-rebalanced factor portfolios  
In this section, we construct several portfolios based on the FTSE USA Index of stocks. We begin by defining a set of 
portfolio weights for each September between 2000 and 2020, with the condition that the portfolio only contains stocks 
which survive the whole year to the following September. Our “non-rebalance” portfolio is then the set of weights that drift 
freely with price movements from September to September. For our “rebalance portfolio”, we use the same set of 
September weights, but also define the weights (on the third Friday) of every other month, which are the same as the 
preceding September weights. Hence, during the September to August period of each year, we define a portfolio whose 
weights are set back to a constant set of weights on a monthly basis. This “rebalance portfolio” therefore satisfies 
sufficient conditions that Fernholz and Shay’s expression (7) for diversification return is valid. 

Note that our “non-rebalance” portfolio is rebalanced on an annual basis. This is necessary, as if we were to impose the 
stock survivorship requirement over the entire period from 2000 to 2020, the resulting portfolio would consist of relatively 
few stocks and less diversified outcomes. Additionally, the factor exposures of such portfolios would decay so that, for 
example, a portfolio with value exposure in September 2000 would not necessarily exhibit value exposure in September 
2020. Our aim is to compare results for diversified portfolios with fixed factor characteristics on a year-by-year basis. 

We will construct five sets of rebalance and non-rebalance portfolios; three factor tilt portfolios representing Quality, Value 
and Low Volatility, one equal weight portfolio and a market-capitalization weighted portfolio. In each case, the eligible 
universe of stocks constitutes the September to September surviving stocks as outlined above. 

The factor tilt portfolios are constructed using the tilt equation: 

 

 𝑊𝑊 = 𝑀𝑀 ∗ 𝑆𝑆 (8) 

 

where 𝑀𝑀 is a vector of market capitalization weights, 𝑆𝑆 is a positive score that varies monotonically with factor score and 
the factor weights 𝑊𝑊 are normalized to sum to one. The tilt is applied to the entire universe, and then the resulting 
portfolio restricted to surviving stocks. These portfolios are relatively pure from the factor perspective, with strong targeted 
exposure and relatively weak off-target exposures. For more details about this construction and factor definitions see [9].  

Note that we have not included tilt portfolios representing Momentum or Size in our analysis. In the case of Size, this is 
simply because the equal weight portfolio acts as a good proxy for the Size factor. In the case of Momentum, unlike other 
factors, frequent rebalancing is necessary to overcome the rapid decay in factor exposure. Typically, we find that a non-
rebalanced portfolio with positive momentum exposure at the beginning of a twelve-month period will have a negative 
exposure by the end of that period. In other words, a non-rebalanced Momentum portfolio is somewhat of an oxymoron, 
so we exclude it from this analysis. 
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The basis point difference in monthly geometric mean return between the rebalanced and non-rebalanced portfolios is 
displayed in Table 1 for each portfolio, and for each annual period ending in September of the given year. There are 
periods where the rebalanced portfolios perform better than the non-rebalanced portfolios, while for other time periods the 
reverse is true. Importantly, neither approach dominates over the entire period for any of our portfolios. Moreover, the 
differences are only a few basis points for most years, apart from 2001, where the non-rebalance portfolios perform 
significantly better, and in 2009, where the rebalance portfolios exhibit a significant advantage. 

Table 1: Difference in mean monthly geometric return between Rebalanced and Non-Rebalanced portfolios (bps) 

 Market Cap Equal Weight Quality Low Volatility Value 

2001 -74 -30 -51 -36 -41 
2002 -4 -5 -2 -3 -5 
2003 7 4 7 9 11 
2004 2 1 2 2 2 
2005 -3 -5 -3 -4 -7 
2006 6 5 7 6 6 
2007 -4 -7 -4 -2 -5 
2008 -3 5 5 -6 -6 
2009 78 104 52 63 90 
2010 2 4 2 3 4 
2011 0 1 2 2 -2 
2012 2 1 1 2 3 
2013 -3 -1 -3 -2 -2 
2014 3 2 2 2 1 
2015 -5 -10 -6 -3 -6 
2016 6 9 6 5 7 
2017 0 -1 -1 0 -1 
2018 -3 1 -3 -3 -1 
2019 5 3 5 5 5 
2020 -7 4 -8 -1 -2 

Source: FTSE Russell. Data based on the FTSE USA Index between September 2000 and September 2020. Please see the end for important legal 
disclosures. 

 

As explained in section 2, we have defined the strategic returns of this set of rebalanced and non-rebalanced portfolios to 
be identical. Therefore, we are led to the conclusion that the differences in geometric return are caused by differences in 
diversification return. 

Figure 1 shows the diversification return of our rebalanced and non-rebalanced quality portfolios for each year ending in 
September, from 2001 to 2020. We have also included a single bar to represent the estimated diversification return given 
by equation (7), which we have calculated using the volatility of the rebalanced portfolio. This single bar is appropriate 
since it is easy to verify that the volatility of the rebalanced and non-rebalanced portfolios are similar during each annual 
period. 
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Figure 1: Diversification Return of Rebalanced and Non-Rebalanced Quality Portfolios  

 

Source: FTSE Russell. Data based on the FTSE USA Index between September 2000 and September 2020. Please see the end for important legal 
disclosures. 

 

The first thing to note is that the diversification return of the rebalanced and the non-rebalanced portfolios are remarkably 
similar to one another for all years, with the exception of 2001 and 2009. In the aftermath of the technology bubble of 
2000-2001, the non-rebalance portfolio shows a greater diversification return. Conversely, in 2009, the financial crisis 
favored the diversification return of the rebalance portfolio. The common feature is that they represented periods of 
extreme market dislocation, where the non-rebalanced portfolio could move significantly away from its initial set of 
portfolio weights. 

We have already argued that under normal circumstances we would expect equation (7) to be a good proximation of both 
the rebalance and non-rebalance diversification returns. It is apparent that the rebalance portfolio’s diversification return is 
well fitted by equation (7) throughout the study period (apart from the high volatility period of 2020). However, for the non-
rebalance portfolio in the years 2001, 2009 and 2020, equation (7) is not a particularly good estimate. We expected that 
the estimate would be reasonable for the non-rebalanced portfolios during periods when the drifting of weights is not too 
extreme. This is confirmed by figure 2, where we have plotted the absolute weight difference between the initial portfolio 
and the drifted weights of the non-rebalance portfolio through time. 
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Figure 2: Absolute Weight Difference of Drifted Weights for Non-Rebalanced Quality Portfolio 

 

Source: FTSE Russell. Data based on the FTSE USA Index between September 2000 and September 2020. Please see the end for important legal 
disclosures. 

 

Clearly in most years, the weights do not drift more than by about 15% from their initial values, but in the years 2001, 
2009 and 2020, they are above 20%. These are the years where the estimate of the diversification return from equation 
(7) is poor. 

Therefore in “normal years,” equation (7) gives a good estimate for both the rebalanced portfolio and the non-rebalanced 
portfolio diversification returns. However, this estimate is poor for the non-rebalanced portfolio, when there is a lack of 
mean-reversion in the returns of individual stocks, which inevitably leads to weight concentration (dilution) in the better 
(worse) performing stocks. 

Figure 3 is a scatter plot of the diversification return of the rebalanced portfolios versus the non-rebalanced portfolios. 
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Figure 3: Scatter plot of diversification return of Rebalanced versus Non-Rebalanced portfolios  

  

Source: FTSE Russell. Data based on the FTSE USA Index between September 2000 and September 2020. Please see the end for important legal 
disclosures. 

 

With the exception of a few outliers representing the volatile periods, the points cluster around the 45-degree line which 
implies that, under normal circumstances, the diversification returns are similar. As to whether it is always better to 
rebalance a portfolio or not, the empirical evidence here is that it is not. Clearly points exist below, and above, the 45-
degree equality line, implying that it is sometimes beneficial to rebalance, and sometimes it is not. We, therefore, conclude 
that equation (7) does not represent an upper bound for the diversification return of the non-rebalanced portfolios. 

Table 2 summarizes the mean monthly geometric, strategic and diversification returns, in basis points, averaged over the 
20-year period for the rebalanced and non-rebalanced portfolios. 

Table 2: Mean monthly geometric, strategic and diversification returns: Rebalanced and Non-Rebalanced 
portfolios  

 Market Cap Equal Weight Quality Low Volatility Value 

 Rebalance 
Non-

Rebalance Rebalance 
Non-

Rebalance Rebalance 
Non-

Rebalance Rebalance 
Non-

Rebalance Rebalance 
Non-

Rebalance 

Geometric Return (bp) 53.68 53.33 75.86 71.78 65.13 64.69 61.19 59.29 61.76 59.14 
Strategic Return (bp) 27.45 27.45 41.75 41.75 42.21 42.21 40.33 40.33 35.28 35.28 
Diversification Return (bp) 26.24 25.88 34.11 30.03 22.92 22.48 20.85 18.96 26.48 23.85 
Volatility (% per month) 4.96 4.80 5.43 5.25 4.72 4.61 4.54 4.42 5.04 4.87 
2-Way Turnover (% pa) 77.44 9.40 82.13 28.88 88.68 29.75 72.75 13.75 84.63 31.16 

Source: FTSE Russell. Data based on the FTSE USA Index between September 2000 and September 2020. Please see the end for important legal 
disclosures. 
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It appears that the differences in the averaged geometric return between rebalanced and non-rebalanced portfolios are 
small. Since the strategic returns are the same for rebalanced and non-rebalanced portfolios by definition, the small 
differences are due to variances in the diversification return. The small difference favors the diversification return of the 
rebalanced portfolios on average, but clearly from figure 1, we see this is not the case for every year over which the 
average has been performed. Indeed, it could be argued that once transaction costs are included into these results, the 
non-rebalance portfolios would have the advantage since their turnover figures are significantly lower. 

For all portfolios, the larger contribution to the 20-year average geometric returns arises from the strategic return. 
Nevertheless, the diversification return contributes to a significant proportion of the geometric mean return. This is 
because the diversification component is always positive, whereas the strategic component may be positive or negative, 
and therefore has the possibility of “cancelling out” over the long term. We will examine this in more detail in the next 
section. 

In summary, our analysis shows that there is little difference between the diversification return harvested by the 
rebalanced and non-rebalanced portfolios, except in certain exceptional years when a subset of stock returns, drive 
portfolio weights significantly apart. 

4. What drives the difference in portfolio performance? 
In this section, we decompose the rebalance portfolio’s returns into the strategic and diversification return components for 
each of our factor portfolios. Our aim is to determine their relative contribution to the monthly geometric mean return. We 
remark that we could have equally performed the same analysis on the non-rebalance portfolios and have drawn similar 
results and conclusions to those that we present here. 

Figure 4 shows the diversification return for each of our rebalanced portfolios for each yearly period ending in September. 

Figure 4: Diversification return through time: Rebalance portfolios  
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Source: FTSE Russell. Data based on the FTSE USA Index between September 2000 and September 2020. Please see the end for important legal 
disclosures. 

Note that for most years, the diversification return is similar for each of the rebalance portfolios, and is positive, but small, 
being less than about 0.2%. However, during years of high volatility, 2001-2003, 2008-2009 and 2020, the diversification 
returns are not only bigger, but differ more significantly between portfolios. Equal weighting consistently has the highest 
diversification return, but it is noteworthy that market capitalization weighting, not normally associated with diversification, 
is not far behind. 

In contrast figure 5 shows the strategic returns of each rebalance portfolio through time. 

Figure 5: Strategic return through time: Rebalance portfolios  

 
Source: FTSE Russell. Data based on the FTSE USA Index between September 2000 and September 2020. Please see the end for important legal 
disclosures. 

Note that the strategic returns are significantly larger in magnitude than the corresponding diversification returns, being of 
the order of +/-1% in most years. Since the sum of the strategic return and the diversification return determines the 
geometric mean return, this graph implies that the strategic return is the dominant contributor to geometric return, apart 
from during the financial crisis of 2008-2009. However, as we have seen in the previous section, when averaged over the 
20-year period, the contributions from the strategic and diversification returns, are closer in magnitude. 

We can gain further insight by noting that performance is usually evaluated relative to the market return. As a proxy for 
this, figure 7 shows the differences between the strategic returns and diversification returns of the Quality rebalance 
portfolio and the market capitalization rebalance portfolio on a yearly basis. 
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Figure 6: Strategic and diversification return differences: Quality Rebalance portfolio vs Market Cap Rebalance 
portfolio  

 
Source: FTSE Russell. Data based on the FTSE USA Index between September 2000 and September 2020. Please see the end for important legal 
disclosures. 

 

It is clear that the difference between strategic returns dominates in most years. The contribution from the diversification 
returns approximately cancels out in every year, apart from 2008 and 2009. This can be explained by the fact that the 
diversification return is small, positive and available to both the Quality and the underlying market cap portfolios; therefore 
differences in diversification return are unlikely to be the main source of differences in the geometric returns of the two 
portfolios.  

This result is emphasized in Table 3, which shows the time-averaged basis point difference in geometric mean, strategic 
and diversification returns between our rebalance factor and market capitalization portfolios. 

Table 3: Average difference in geometric, strategic and diversification return of Factor and Market Cap Rebalance 
portfolios (bps)  

Difference in bps Equal Weight Quality Low Volatility Value 
Geometric Return 22.18 11.45 7.51 8.08 
Strategic Return 14.30 14.76 12.89 7.84 
Diversification Return 7.88 -3.32 -5.38 0.25 

Source: FTSE Russell. Data based on the FTSE USA Index between September 2000 and September 2020. Please see the end for important legal 
disclosures. 

 

Note that the results of Table 3 are easily derived from those of Table 2, by subtracting the results for a rebalanced 
market capitalization portfolio from each of the other rebalanced portfolios. It may be argued that, since the non-
rebalanced market capitalization portfolio is naturally closer in weight to the usual FTSE USA Index benchmark, it is a 
more appropriate comparator. However, it is clear that subtracting the non-rebalanced market capitalization portfolio 
would make very little difference to the results in Table 3. 
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Only in the case of the equal weight portfolio does a sizable proportion of the positive difference in geometric mean return 
arise from the diversification return. For the Value portfolio, the positive contribution is very small. In the case of Quality 
and Low Volatility, the diversification return actually contributes negatively to the difference. In other words, on average, 
the diversification return for the rebalanced market capitalization weighted portfolio is greater than that of the Quality and 
Low Volatility rebalanced portfolios. 

On the other hand, it is clear that the average differential strategic return contributions are positive, dominant and 
consistent with the expected factor premia payoffs. This is unsurprising since the strategic differences are directly driven 
by the active weights, which in turn have been designed to capture factor exposure. 

Note that the significant difference between equal and market capitalization portfolio strategic returns found in this 
analysis contrasts results reported by Banner et al. [4]. They state that the strategic return is approximately the same for 
several “naive” weighting schemes, so that differential performance is attributed solely to the diversification return. These 
naïve weighting schemes include capitalization weighting, equal weighting, random weighted, inverse random weighted 
and a “large overweight” scheme that weights in proportion to the square of market capitalization. This discrepancy may 
result from the fact that our analysis spans the period of 2000-2020, whereas their study takes place over the longer, but 
less recent period of 1964-2012. We assume that what characterizes their portfolios strategies as “naïve” is that no 
deliberate stock picking or exposure properties are sought after or assumed. This certainly contrasts our factor tilt 
portfolios that are explicitly designed for factor exposure. 

Our results also seem to be at odds with recent research by Lin and Sanger [3]. They conclude that the bulk of smart beta 
performance arises through harvesting of diversification return through portfolio rebalancing. Again, this may be partly 
explained by their analysis being over the period 1972-2013, instead of 2000-2020. However, although they do perform a 
Fama-French regression analysis on portfolio returns to identify alpha associated with the diversification return, they also 
report factor betas that are positive and significant. Therefore, they actually demonstrate that factor exposures do 
influence the returns of these portfolios. 

5. Conclusions 
There has been considerable debate about the nature of a novel source of portfolio return, known as the “excess growth 
rate” since it was introduced by Fernholz and Shay in 1982 [1]. It has widely been described as a “rebalance premium” 
derived as a result of regular portfolio rebalance, or as a “diversification return” arising from volatility reduction due to 
portfolio diversification.  

We believe these interpretations arise from the elegant formula derived for it by Fernholz and Shay [1], and later by Booth 
and Fama [2]. The formula expresses the diversification return as half the difference between the weighted average stock 
volatility of the constituents of a portfolio and portfolio volatility. Therefore, it contributes positively to the total geometric 
return of a portfolio, and can be directly understood as arising from the diversification benefits of holding a portfolio, rather 
than individual stocks. It would also appear that rebalancing is essential to harvest this return, since the expression is 
derived under the assumption that a portfolio is rebalanced back to a constant set of portfolio weights. 

In this note, we have shown that a more general notion of diversification return—defined as the difference between the 
geometric return of a portfolio and a weighted sum of stock level geometric returns (or “strategic return”)—may be applied 
to both rebalanced and non-rebalanced portfolios. We have gone on to argue that, under circumstances where a non-
rebalanced portfolio’s weights do not drift too far from their starting points, Fernholz and Shay’s formula valid for portfolios 
that are regularly rebalanced to constant weights, also yields a reasonable estimate for the non-rebalanced diversification 
return. We have then verified this empirically for various rebalanced and non-rebalanced factor portfolios. 

The upshot of this analysis is the rather unsurprising result that, in general, the relative performance of a set of rebalanced 
portfolios compared to an equivalent set of non-rebalanced portfolios depends on market conditions. The strategic return 
component is common to both sets of portfolios, so any performance difference arises when Fernholz and Shay’s formula 
fails for the diversification return of the non-rebalanced portfolio. When this happens, either portfolio could outperform the 
other. Despite this, we find some evidence that longer term averages favor the rebalanced portfolio, but that such an 
advantage is small, and would probably be insufficient to cover the higher level of transaction costs incurred.  
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Nevertheless, we conclude that, when considering absolute geometric return of both rebalanced and non-rebalanced 
portfolios, the diversification return contributes a significant component.  

However to assess the performance of factor portfolios, it is usual to calculate their performance relative to a chosen 
benchmark. On taking our market capitalization weighted portfolio as a proxy for this benchmark, we have seen that the 
diversification return contributions tend to “cancel out” since they are positive, small and similar in both the factor and 
benchmark portfolios. This leaves the dominant contribution to geometric return arising from differences in strategic 
returns. Note that the strategic return is directly related to the active weight of each of our factor portfolios, which have 
been specifically designed to capture positive active factor exposure. Therefore, the relative performance of our factor 
portfolios is driven by their active factor exposures, rather than the differential harvesting of diversification return. Similar 
results were found for factor portfolios in a study by Greene and Rakowski [10]. 

We hope that this analysis clarifies the subtle, and much misunderstood, concept of the diversification return and its 
contribution to portfolio performance. 
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6. Appendix 
Note the familiar expression relating the portfolio return 𝑅𝑅𝑃𝑃,𝑡𝑡+1 at time 𝑡𝑡 + 1 to the individual stock weights at time 𝑡𝑡 and 
stock return 𝑟𝑟𝑖𝑖,𝑡𝑡+1 between time 𝑡𝑡 and 𝑡𝑡 + 1 is: 

 

 𝑅𝑅𝑃𝑃,𝑡𝑡+1 = �𝑊𝑊𝑖𝑖,𝑡𝑡 ∗ 𝑟𝑟𝑖𝑖,𝑡𝑡+1

𝑁𝑁

𝑖𝑖=1

 (9) 

 
Taking time averages of both sides of (2) gives:  

 

 𝑅𝑅�𝑃𝑃 =
1
𝑇𝑇
��𝑊𝑊𝑖𝑖,𝑡𝑡 ∗ 𝑟𝑟𝑖𝑖,𝑡𝑡+1

𝑁𝑁

𝑖𝑖=1

𝑇𝑇−1

𝑡𝑡=0

 (10) 

 
Crucially when 𝑊𝑊𝑖𝑖,𝑡𝑡 = 𝑊𝑊𝑖𝑖,0 for all 𝑡𝑡, that is when the weights are rebalanced back to a constant set of starting weights, this 
equation simplifies to: 

 

 𝑅𝑅�𝑃𝑃 = �𝑊𝑊𝑖𝑖,0 ∗ 𝑟̅𝑟𝑖𝑖

𝑁𝑁

𝑖𝑖=1

 (11) 

 
In other words, the average portfolio return is equal to the weighted sum of the average stock returns when rebalanced 
weights are held at fixed values.  
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