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Abstract

This paper proposes a network model of the economy in which conglomerate firms

transmit idiosyncratic shocks from one industry to another. The strength of inter-

industry connections in the network is determined by two factors: 1) conglomerates’

market shares of total industry sales, and 2) the distribution of a conglomerate’s total

sales across industries. From these two factors, the model generates a new measure

of cross-industry concentration that extends the widely-used Herfindahl index. Con-

sistent with the model’s predictions, the empirical results show that industry growth

rates comove more strongly within industry pairs that are more closely connected in

the conglomerate network.
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I. Introduction

This paper studies how industrial concentration influences the transmission of id-

iosyncratic shocks across the economy. In a seminal paper, Gabaix (2011) shows

that aggregate economic growth is driven by a small number of very large firms. Be-

cause economic activity is sufficiently concentrated in this small set of firms, their

idiosyncratic shocks are not averaged out by the large number of little firms, leading

to aggregate fluctuations. Acemoglu, Carvalho, Ozdaglar, and Tahbaz-Salehi (2012)

present a related explanation for aggregate fluctuations based on the inter-sectoral

transmission of shocks through input-output (IO) links. As in Gabaix, it is the con-

centration of IO links within a small number of very influential sectors that causes

idiosyncratic shocks to spread throughout the economy. These papers show that

to understand aggregate economic fluctuations, it is imperative to understand how

idiosyncratic shocks transmit from one sector to another.

We start from a simple observation: the largest firms in the economy tend to be

conglomerates that span multiple industries. This means that the large, firm-level

idiosyncratic shocks of Gabaix are actually transmitted across multiple industries

through conglomerates. At the same time, a large division of a conglomerate might

be small relative to the industry, while a small division could be relatively large.

For example, one of the largest firms in the world, Amazon, receives the bulk of its

revenues from its retail operations. However, Amazon commands a relatively small

share of the total retail sector. In contrast, Amazon receives only 12% of its revenues

from its computing services division, but maintains a dominant 33% market share

within that industry. Thus, industrial concentration is likely to affect how firm-level

idiosyncratic shocks transmit across the economy.

To better understand the transmission of idiosyncratic shocks, we model the econ-

omy as a bipartite, affiliation network of firms and industries. In the bipartite net-

work, firms are only affiliated with industries, and industries are only affiliated with

firms. We define the strength of connections from firms to industries, and vice versa,

in proportion to their total outputs. Specifically, we assume that a growth shock

transmits from a firm to an industry with a strength proportional to the firm’s share

of total industry sales. Similar to Gabaix (2011), an idiosyncratic shock to a firm

that commands a large share of industry output has a greater influence on the indus-

try’s total fluctuations. In the opposite direction, we assume that a shock transmits

from an industry to a firm with a strength proportional to the industry’s share of the

firm’s total sales. For instance, a shock to the computing services industry will only
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affect 12% of Amazon’s total sales. Thus, in our network, each firm-industry pair is

characterized by two directed links, each with its own strength.

Using the dual perspectives of a bipartite network, we create two separate unipartite

networks, one for industry-to-industry links and another for firm-to-firm links. In the

firm-to-firm network, firms are connected to other firms through common industry

affiliations. In this perspective, intra-industry market forces serve as the conduit

between firms. In the dual perspective, industries are connected to other industries

through conglomerate firms that operate in both industries. Thus, in this perspective,

conglomerate firms serve as the conduit of economic shocks between industries. The

duality of firms and industries in our model is in the spirit of Alchian and Demsetz

(1972), who argue that, in a frictionless setting, contracts within a firm are identical

to contracts across a market.

For both unipartite networks, we derive three forms of connections. For brevity,

we only describe the industry-to-industry connections at this point, but the firm-

level connections are analogous. First, we calculate the strength of the inter-industry

transmission from an industry to its affiliated firms and then from these firms to

another industry. Because we allow for weighted and directed links in the network,

the transmission strength from industry A to industry B is not necessarily equal to

the strength from B to A.

Second, we calculate two projections from firms onto industries. In one projection,

we calculate the shared in-links of an industry-pair. This measures the strength of

industry connections based on the commonality of market shares of the firms that

operate in both industries. If the same firms have more similar market shares in

two industries, these industries are more connected. In the second projection, we

calculate the shared out-links of an industry-pair. This represents the commonality

in firms’ exposures to industry shocks. These three measures of industry connections

are based solely on the concentration of economic activity and abstract from other

forms of connections between industries, such as customer-supplier links, common

geographic locations, or shared institutional investors.

Though this network model is simple, it provides new insights on a number of im-

portant topics. First, the model generates new predictions on the variance and covari-

ance of growth rates across industries. In particular, the model predicts that the vari-

ance of an industry’s growth rate equals the sum of the industry-specific growth rate

variance plus the variance of firm-specific growth scaled by the Herfindahl-Hirschman

Index (HHI) of the industry. Second, the model predicts that the covariance of two
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industries’ growth rates equals to firm-specific variance scaled by the shared in-links

of the two industries in the network. Intuitively, industries that share the same con-

glomerate firms will face common firm-level shocks. In the dual representation, we

show that diversified firms, with lower concentrations of in-links from industries, have

lower volatility in their growth rates.

Second, like Acemoglu et al. (2012), our model describes how idiosyncratic shocks

transmit throughout an economy. In particular, our model predicts the paths and

timing of the transmission of shocks from one industry to another. We show that

industry centrality in the conglomerate network is directly proportional to the size of

an industry’s sales as a fraction of the economy’s total sales. This finding provides a

microfoundation for Gabaix’s result on the importance of large firms.

Third, our model provides a microfoundation for standard measures of industry

concentration. In particular, just as variance is a special case of covariance, our

model shows that the widely-used HHI is a special case of a more general measure of

cross-industry concentration that we call CoHHI. We define CoHHI as the shared in-

links of two industries, as described above. Thus, CoHHI reflects the degree to which

the market shares of firms in two industries overlap. If the same firms command

the same market shares in each industry, then the two industries will have the same

level of exposure to the same firm-specific idiosyncratic shocks. Using the covariance

analogy, the CoHHI of an industry with itself is identical to HHI. Thus, our network

provides a new interpretation of HHI as the concentration of in-links into an industry.

To bring our theoretical framework to the data, we use segment data from Compu-

stat for all public firms in the US for the years 1997 to 2018. Though our theoretical

framework provides both firm-level and industry-level representations of the economy,

we focus on the industry-level analysis to reduce selection bias concerns. To create

a balanced panel of industries, we form industry families following the procedure in

Pierce and Schott (2016). In a series of robustness checks, we show that the main re-

sults are not driven by truncation bias caused by using Compustat data or particular

industry definitions.

First, we show that the conglomerate network exhibits features of scale-free net-

works. In particular, the network is sparse with relatively few central industries and

many peripheral industries. Consistent with small world networks, the maximum

path length between industries in an average year is 7.5 links, out of over 500 differ-

ent industries. We also show that during the sample period, the network evolved into
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a more concentrated network as industries dropped links to more peripheral indus-

tries while retaining links to more central industries. These statistics provide a new

perspective on the changing importance of conglomerate firms in the economy.

Next, we show that the conglomerate network is empirically distinct from other

forms of industry connections. First, the correlation between conglomerate network

links and input-output links is low. This is consistent with the notion that conglomer-

ate firms diversify for reasons beyond vertical integration, such as economies of scope

(Teece, 1980), co-insurance (Lewellen, 1971), or agency conflicts (Jensen, 1986). Sec-

ond, the pattern of conglomerate ownership is not driven by product similarity, as

measured by Hoberg and Phillips (2016).

To estimate the relationship between the industry connections in the conglomerate

network and the comovement of industry growth, we first estimate cross-sectional

regressions. We find that CoHHI is positively correlated with the covariance of sales

growth and asset growth in the cross-section of industries, consistent with our theo-

retical framework. Also consistent with our framework, we find that the volatilities

of growth rates are positively correlated with HHI, reflecting that concentrated in-

dustries are less diversified across individual firm-level shocks.

Next, to further isolate the correlation between the conglomerate network and the

covariance of industry volatilities, we estimate panel regressions where the dependent

variable is the squared difference of growth rates between industries. Industry-pair

fixed effects capture both time-invariant industry and industry-pair characteristics

that could influence the comovement of industry growth rates, such as average volatil-

ity, the labor share in production, and the average firm size. Year fixed effects control

for general macroeconomic trends that could influence the comovement of industry

growth rates. We also control for input-output linkages and product market similar-

ity of Hoberg and Phillips (2016). Thus, our empirical model isolates the correlation

between abnormal time-series variation in the conglomerate network and the comove-

ment of industry growth.

The panel regressions show that when two industries have stronger connections

in the conglomerate network, their growth rates comove more closely, as predicted

by the model. The results hold for both in-links, out-links, and the transmission

network for sales growth and asset growth. The economic magnitude of the results is

meaningful. Compared to an industry-pair with no conglomerate link, the formation

of a link is associated with a squared difference in growth rates that is lower by about

30%, relative to the median squared difference.



THE CONGLOMERATE NETWORK 5

Because conglomerate firms do not randomly choose the industries in which they

operate, it is possible that our results reflect the endogenous choice of firms to operate

in industries that tend to comove with each other. We address this concern in a

variety of ways. First, we note that the conglomerate network is based on market

shares, which are not endogenously chosen by firms, but are determined by market

forces. Second, the industry-pair fixed effects in our tests control for all time-invariant

factors that cause industries to comove, while the time-varying variables control for

the most common economic determinants of comovement. Though we cannot rule

out all alternative explanations, our research design implies that for our results to

be spurious, there would need to be an omitted time-varying factor that is highly

correlated with time-varying market shares, but also orthogonal to major economic

determinants of diversification.

To further address endogeneity concerns, we use a quasi-natural experiment to

identify the transmission of economic shocks through the conglomerate network. Fol-

lowing Pierce and Schott (2016), we exploit cross-sectional variation in industries’

exposure to tariff rate shocks from the granting of normal trade relations to China in

2000. Using the conglomerate network from 1999 to control for reverse causation, and

controlling for industry fixed effects, year fixed effects, and customer-supplier links,

we find that industries with stronger connections in the network to those industries

most affected by the tariff shock had larger declines in employment following the

shock. These results show that a specific, identifiable industry shock can be traced

through the conglomerate network.

Finally, we present a series of robustness tests. First, because we construct the

conglomerate network using only publicly-traded firms’ segment data, we test for the

generalizability of our results using employment data from the US Census County

Business Patterns data, which covers nearly all establishments in the private sector.

We find similar results using these data, which implies that the predictive power of

the conglomerate network is not limited to public firms. Second, we find similar

results to our baseline tests when we estimate the same relationships using lagged

measures of the conglomerate network. These results further mitigate concerns of

reverse causation. Third, we increase the minimum size threshold of firms in our

sample to show that there is little evidence of truncation bias from using relatively

large, public firms to construct our conglomerate network. Fourth, we show that our

results persist when we construct our network using coarser industry definitions. We

also provide evidence of the transmission of shocks within conglomerates, as shown
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in prior research, and provide suggestive evidence on the role of financial constraints

for the transmission of shocks.

This paper makes two central contributions. First, we present a model and empiri-

cal evidence of inter-industry transmission of economic shocks through conglomerate

firms. As discussed above, these findings build on Gabaix (2011) and Acemoglu, Car-

valho, Ozdaglar, and Tahbaz-Salehi (2012). More recently, Herskovic, Kelly, Lustig,

and Van Nieuwerburgh (2020) find that firm size is related to aggregate fluctua-

tions in a firm-level customer-supplier network. Additional empirical evidence of the

spread of idiosyncratic shocks through production networks is found in Ahern and

Harford (2014) and Barrot and Sauvagnat (2016). In contrast to these papers, we

show that industry-specific shocks transmit across the economy through the internal

redistribution of conglomerate firms. Our approach is also related to the notion that

local shocks spread to wider geographic regions through multi-regional firms (di Gio-

vanni, Levchenko, and Mejean, 2014; Kleinert, Martin, and Toubal, 2015; Giroud and

Mueller, 2019). In contrast to shocks that are spread across geographic space, we show

multi-segment firms facilitate the spread of economic shocks across industry space.

Our results also relate to recent literature on the importance of common ownership

(Azar, Schmalz, and Tecu, 2018; Antón, Ederer, Giné, and Schmalz, 2018). While

this line of research focuses on partial ownership by institutional investors, we study

controlling ownership by conglomerate firms.

This paper also relates to the large literature on the causes of within-firm real-

location of resources (Stein, 1997; Lamont, 1997; Shin and Stulz, 1998; Matsusaka

and Nanda, 2002) and the motivations for diversification (Lewellen, 1971; Aggarwal

and Samwick, 2003; Villalonga, 2004). Our model does not depend on any specific

mechanisms and our goal is not to identify specific internal mechanisms that cause

within-firm or within-industry reallocations. In contrast, we provide a macro-level,

industry-to-industry perspective of reallocations, taking as given the reasons for diver-

sification and the various micro-level mechanisms of internal reallocations documented

in the prior literature.

The second contribution of this paper is to provide a novel, economic interpreta-

tion of HHI. Even though HHI was not originally developed from economic theory,1

it has become the standard metric of industry concentration among academics, prac-

titioners, and policy-makers. For example, during 2011 to 2020, HHI is referenced

1HHI was originally developed to meet two ad hoc criteria of concentration measures (Hirschman,
1945; Herfindahl, 1950). Hirschman acknowledges that HHI is not a unique solution.
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in 4.5% of all articles published in the top five economics journals, which represents

an increase of 87% relative to the 2000s. Second, HHI is a primary filter to identify

non-competitive markets among a wide range of regulatory agencies, including the

DOJ, FTC, FCC, FDIC, and the Federal Reserve. Our framework provides a new

microfoundation for the calculation of HHI based on a network of firms and indus-

tries. To our knowledge, this provides one of the only economic interpretations of

HHI.2 Moreover, we use our framework to derive a new measure of cross-industry

concentration, CoHHI.

II. The Theoretical Conglomerate Network

To construct the conglomerate network of industries, we start with a bipartite

graph, also known as a two-mode network or an affiliation network, in which there

are two types of nodes that are disjoint, independent sets and each type of node is

connected only to nodes of the other type. Typical examples of affiliation networks

include football players and football clubs, co-authors and publications, and corporate

directors and corporate boards. Much of the research on networks in economics

studies one-node networks with an implicit assumption of an underlying two-mode

network. For instance, corporate boards typically do not have direct connections

with other corporate boards, but instead, have indirect connections through shared

directors in an affiliation network.

In our network, the two types of nodes are firms and industries. Firms are af-

filiated with industries, and industries are affiliated with firms. Because two-mode

networks have two distinct types of nodes, they allow for dual perspectives on the

network’s structure. In our setting, one representation of the network is from the

perspective of firms: firms are connected to each other through shared industry affil-

iations. This perspective is the commonplace view of the relationship between firms

and industries. The dual representation of the network from the perspective of in-

dustries is less commonplace: industries are connected to other industries by firms

that operate in multiple industries. In this perspective, conglomerate firms that span

multiple industries are the conduits for economic shocks to transmit between indus-

tries. Though the firm perspective is the basis for the common assumption that firms

in the same industry face the same economic shocks, the industry perspective is an

2Stigler (1964) and subsequent research shows that HHI is directly related to profitability in Cournot
competition models. Our microfoundation applies to all industries, not just those with Cournot
competition, which, according to Berry, Gaynor, and Morton (2019), are rare.
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equally valid representation of the same underlying two-mode network. Because of

the importance of conglomerates in the dual representation, throughout the paper,

we call this affiliation network the conglomerate network.

The transmission of economic shocks in the conglomerate network is distinct from

an input-output network where firms buy and sell directly from other firms. Instead,

economic shocks in the affiliation network transmit through firms’ shared exposure to

industry conditions, or equally, through industries’ shared exposures to firm condi-

tions. Thus, our model assumes that conglomerates internally reallocate shocks from

one sector to another and that industries reallocate shocks from one firm to another.

We do not model the specific sources of these shocks, nor any specific mechanisms that

cause firms to internally redistribute industry shocks among their segments. We only

assume that such mechanisms exist, and then study how the shocks spread through

the conglomerate network.

A large literature supports this assumption. For example, prior theoretical research

argues that within-firm redistribution could be caused by corporate socialism (Scharf-

stein and Stein, 2000), optimal reallocation to equate marginal revenue products of

capital or labor (Williamson, 1975), or the trade-off between the benefit of flexible in-

vestments versus the costs of agency-driven over-investment (Matsusaka and Nanda,

2002). A large body of empirical evidence also supports these assumptions (Mak-

simovic and Phillips, 2002; Seru, 2014; Tate and Yang, 2015; Giroud and Mueller,

2019). Similarly, the assumption that market forces within an industry redistribute

firm-level idiosyncratic shocks from one firm to another is also supported by a large

literature. As summarized in Shea (2002), these forces could be consumption comple-

mentarities, external economies of scale, or aggregate demand spillovers, among other

spillover mechanisms. The generality of these assumptions reflects our focus not on

the transmission of shocks within firms or within industries but on the firm-to-firm

and industry-to-industry transmission of shocks.

We also do not model the formation of the conglomerate network. Instead, we take

the network as given, and identify the transmission of shocks through conglomerate

links. This approach mirrors the approach of research on production networks. Just

as we do not attempt to identify why one firm chooses to operate in a particular set of

industries, research on production networks does not typically model why a customer

chooses one set of suppliers over another set (Acemoglu, Carvalho, Ozdaglar, and

Tahbaz-Salehi, 2012; Herskovic, Kelly, Lustig, and Van Nieuwerburgh, 2020).
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II.A. Formal Definitions

To formalize these assumptions, we assume the economy has i = 1, . . . , n firms and

j = 1, . . . , m industries. Let S be the n×m bi-adjacency matrix in which entry si,j

denotes firm i’s sales in industry j. Thus, the total sales for firm i is Σm
j si,j. The

total sales for industry j is Σn
i si,j. Below, we use capital letters to denote matrices,

lower case letters to denote matrix elements, and ~x to represent vectors.

We normalize S in two ways. First, we generate the matrix of market shares, H ,

by normalizing S by its column sums. Thus, the market share of firm i in industry

j is hi,j =
si,j

Σn
i si,j

. Similarly, we generate the matrix of industries’ firm shares, F ,

by normalizing S by its row sums: fi,j =
si,j

Σm
j si,j

. Thus, each entry of F represents

the fraction of firm i’s total sales that are attributed to industry j. By normalizing

industries and firms by their total sales, we focus on the relative importance of the

connections between industries and firms, rather than the size of each node.

We allow the connections between firms and industries in the conglomerate net-

work to be directional and weighted. In particular, we assume that growth shocks

that transmit from a firm node to an industry node are weighted by the firm’s mar-

ket share in the industry, as recorded in H . Intuitively, a firm-level shock will af-

fect an industry’s growth in proportion to the firm’s fraction of the industry’s total

sales. Analogously, we assume that shocks that transmit from an industry to a firm

are weighted by the size of the industry segment in the firm’s overall operation, as

recorded in F . We denote this fraction as an industry’s firm share, analogous to a

firm’s market share. Intuitively, an industry-wide growth shock will affect a firm’s

growth in proportion to the industry’s importance in the firm’s total sales.

We combine F and H into an (m+n)×(m+n) adjacency matrix A that represents

the complete, weighted and directed bipartite graph, as follows,

A =

[

0 F ′

H 0

]

. (1)

The firstm rows and columns of A refer to industries, and the last n rows and columns

refer to firms. Matrix A represents the effect of a shock in the row entry on the column

entry. F ′ represents the effect of a shock transmitting from an industry to a firm.

H represents the effect of a shock transmitting from a firm to an industry. The zero

matrices on the diagonals reflect that in the bipartite graph, firms and industries do

not have direct connections. Also note that A is not symmetric, which reflects the

directional nature of the bipartite network.
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To illustrate our network setting, consider a simple example with three firms (x,

y, and z) that operate in two industries (p and q). Their segment sales are given in

matrix S, and we normalize S by row sums and column sums to generate F and H ,

as follows:

S =







p q

x 3 3

y 0 3

z 1 4






, F =







p q

x 0.50 0.50

y 0.00 1.00

z 0.20 0.80






, H =







p q

x 0.75 0.30

y 0.00 0.30

z 0.25 0.40






.

(2)

Figure I provides a graphical representation of this network, where blue arrows refer

to the effect of firms on industries (H) and red arrows refer to effects of industries on

firms (F ), where the weights of the connections are determined by a firm’s market

share (blue arrows) or an industry’s firm share (red arrows).

x

y

z

p q

0.5

0.75

0.8 1.00.2

0.25 0.4

0.30.5

0.3

Figure I
A Network with Two Industries and Three Firms

This figure presents a graphical representation of an example network. The firms are
x, y, and z, and the industries are p and q. Blue arrows reflect matrix H, the effect
of firms on industries. Red arrows reflect matrix F , the effect of industries on firms.

This example illustrates our definition of the strengths of connections in the con-

glomerate network. Because firm x receives half of its sales from industry p, a growth

shock in industry p will affect half of firm x’s sales. In contrast, the same industry

shock in p only affects firm z by 0.2, because firm z only receives 20% of its sales from

industry p. An identical interpretation exists for the dual of the network. A growth

shock in firm x has a larger effect in industry p than q because firm x has a market

share of 75% in industry p, but only 30% in industry q.
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II.B. Network Transformations

To study the inter-industry and inter-firm connections, we transform the bipartite

graph in matrix A into a unipartite graph in three ways. The first transformation

represents the strength of transmissions between nodes of the same type based on

the compound effect of shocks from one industry to another through affiliated firms,

or from one firm to another through industry affiliations. The second and third

transformations are projections from one set of nodes onto the other. The projections

reflect the strength of shared in-links or shared out-links between nodes of the same

type.

B.1. Network Paths

The first transformation of the network generates the strength of the paths that

lead from one node to another of the same type. In particular, we denote

Transmission Matrix = A2 =

[

F ′H 0

0 HF ′

]

. (3)

In a bipartite network, it takes two links to connect nodes of the same type (e.g.,

one link from an industry node to firm nodes, and a second link from firm nodes

to industry nodes). If A was an unweighted adjacency matrix consisting of zeros

and ones, A2 would count the number of unique paths with a length of two that

connect two industry nodes. If more paths connect two industries, they would have a

stronger connection. In our case, using weighted links, the entry in the j’th row and

k’th column of F ′H reflects the compound effect of a transition from industry j to

industry k through conglomerate firms that operate in both industries. Likewise, in

the bottom-right quadrant of A2, HF ′ represents the compound effect of inter-firm

transitions through industries. Note also that A2 is a left stochastic matrix, where

each column sums to one.

In our numerical example, the effect of moving from p to q is the effect of moving

from p to x, then x to q (0.50 · 0.30) plus the effect of moving from p to z then z to q

(0.20 ·0.40), which equals 0.230. Panel A of Figure II presents a visual representation

of the transition matrix. Notice that this matrix is not symmetric. The effect of

moving from p to q is 0.230 compared to the effect of moving from q to p, which is

0.575. The asymmetry is caused by asymmetry in the strength of the nodes’ in-links

relative to their out-links. In Figure I, note that the strength of links that lead out

of industry p are weaker than the links that lead into industry p. In contrast, the
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strength of the links that lead out of industry q are stronger than the links that lead

into it.

Second, the diagonal entries in A2 represent the transmission from a node back to

itself after two links in the network. For example, the first entry in F ′H represents

the effect of a shock transitioning from industry p back to industry p. In particular,

this is the effect of moving from p to x, then x to p (0.50 · 0.75) plus the effect of

moving from p to z then z to p (0.20 · 0.25), which equals 0.425. In a network setting,

the diagonals of A2 represent a feedback loop, or an ‘echo,’ as denoted in Sharifkhani

and Simutin (2021). In the sense of the redistribution of a shock, we can also think

of the diagonal of A2 as the residual fraction of the shock that is not transmitted to

other nodes.

Panel B of Figure II presents the firm-to-firm transition of our numerical example.

A shock in firm x has the greatest effect back on firm x and the least effect on firm

y. As in industries, the transition matrix for firms is asymmetric.

B.2. Network Projections

The second type of transformation is a projection from firms onto industries and

vice versa. The first projection reflects the strength of shared in-links:

Shared in-links = A′A =

[

H ′H 0

0 FF ′

]

. (4)

A′A reflects the strength of the in-links that two nodes share and the diagonal of the

matrix is the sum of the squared weights of the in-links for each node. This reflects

how similar two nodes are to each other based on the strength of their common expo-

sures. If two industries receive shocks from the same firms, in the same proportions,

then they will be more closely related in this projection. Because the projection is

based on shared in-links, it is a symmetric matrix.

Panels C and D of Figure II present a visual representation of the strength of shared

in-links for our numerical example. At the firm-level, firm z has a smaller connection

to x than it does to y. This is because firms z and y share strong common in-links

from industry q, whereas firms x and z share weak common in-links from industry p.

Thus firm z has a more similar exposure to firm y from industry shocks than it does

to firm x.
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(a) Industry Transition Matrix F ′H
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(b) Firm Transition Matrix HF ′
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(c) Industry Shared In-links H ′H
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(e) Industry Shared Out-links F ′F
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(f) Firm Shared Out-links HH ′

Figure II
Three Transformations of the Conglomerate Network

Panels A and B present transition matrices for industries (A) and firms (B). Panels
C and D present projection matrices of shared in-links for industries (C) and firms
(D). Panels E and F present projection matrices of shared out-links for industries

(E) and firms (F).
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The second projection reflects the strength of shared out-links:

Shared out-links = AA′ =

[

F ′F 0

0 HH ′

]

. (5)

If A was an unweighted, binary matrix, AA′ would reflect the number of out-links with

the same destination that two nodes share in common. Using weighted connections,

as in our case, AA′ reflects the strength of the out-links that two nodes share and the

diagonal of the matrix is the sum of the squared weights of the out-links for each node.

This reflects how similar two nodes are to each other based on the strength of the

commonality of destinations for shocks. If two industries tend to have similar effects

on the same firms, then the industries have higher connections in this projection.

II.C. Concentration Measures in the Conglomerate Network

The conglomerate network provides a new interpretation of standard measures of

industry concentration. First, note that the columns of H are n-dimensional vectors

representing the market shares of the n firms in each industry. Denote an arbitrary

column j in H as ~hj . As defined above, the entries of the matrix of shared in-

links, H ′H , are equivalent to the dot products of the columns of H . Therefore,

for two industries, j and k, the row j and column k entry of H ′H is ~hj · ~hk =

h1,jh1,k+h2,jh2,k+ · · ·+hn,jhn,k. The diagonal entries of H
′H are the dot products of

an industry’s market share vector with itself. For industry j, this is h21,j+h
2
2,j+· · ·h2n,j.

Thus, the diagonal entries of H ′H are the Herfindahl-Hirschman Indices (HHI) of

industry concentration.

Using the conglomerate network, we can extend this derivation of HHI to generate

a measure of cross-industry concentration. For two industries, j and k, we define,

Industry CoHHIj,k = (H ′H)j,k = ~hj · ~hk = h1,jh1,k + h2,jh2,k + · · ·+ hn,jhn,k. (6)

Industry CoHHI is the commonality in the pattern of firms’ market shares across

two industries. If the same firms have similar market shares in both industries,

then Industry CoHHI will be larger. Thus, Industry CoHHI reflects the similarity of

concentration of sales across firms in different industries. In turn, this means that the

standard definition of Industry HHI is a special case of Industry CoHHI with itself.

This representation provides a microfoundation for the calculation of industry con-

centration as the sum of squared market shares, which is not justified in Hirschman
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(1945) or Herfindahl (1950).3 In addition, using the conglomerate network to derive

HHI reveals that HHI is a special case of a more general measure of CoHHI, which

reflects the similarity between industries’ market share distributions. Using the net-

work perspective, these results also show that standard HHI measures can be thought

of as the concentration of in-links of an industry. In other words, if two industries

receive the same shocks from the same set of firms, then the two industries have high

co-concentration.

We can apply a similar idea to the projection of out-links, AA′. At the industry

level, F ′F reflects the commonality of out-links from industries to firms. If two

industries tend to affect the same set of firms, then the two industries have higher co-

concentration of destinations. This would happen when firms have the same fraction

of sales from the same industries. Industries with focused firms will tend to have

higher out-link concentration. Thus, this projection represents a new measure of

industry concentration that is complementary to standard HHI.

Because of the duality of the bipartite graph, we can also provide similar measures of

concentration at the firm level. In particular, FF ′ represents the Firm CoHHI matrix

in which the diagonals are the Firm HHIs of concentration, and the off-diagonal

elements are the Co-HHI between firms. Firm HHI measures the concentration of a

firm’s sales across industries. A firm with equal sales in two industries has a lower

Firm HHI than a firm with the majority of its sales in one industry. The Firm Co-

HHI reflects the commonality of two firm’s distribution of sales across industries. Two

firms that tend to sell the same fractions of their total sales in each industry will have

a higher Co-HHI.

II.D. The Variance of Growth Shocks in the Conglomerate Network

In this section, we use our model to derive predictions on the covariance of industry

and firm growth rates. We assume at time τ = 0, firm i receives a shock εi and

industry j receives a shock ηj . Both shocks are random variables with mean 0 and

3Hirschman designed HHI to meet two criteria that he argued that any measure of industry con-
centration should include: 1) concentration should be related to the dispersion of market shares,
and 2) concentration should be declining with the number of firms in an industry. Hirschman’s
measure accomplished these two goals, though the square of market shares was not justified. In
fact, Hirschman recognized that his concentration measure is not the only measure that could meet
these criteria. Herfindahl (1950) justified using the square of market shares by considering HHI as a
weighted average of market shares where the weights were the market shares themselves. However,
he did not justify using the shares as weights versus logged market shares, the square root of market
shares, or any other weighting scheme.
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standard deviations σε and ση, such that cov(εk, εl) = 0 for all (k, l) when k 6= l;

cov(ηk, ηl) = 0 for all (k, l) when k 6= l; and cov(εk, ηl) = 0 for all (k, l). Thus, ε

represents firm-level growth shocks after removing industry-level growth shocks, η,

and vice versa. For simplicity, we assume that σε is the same across firms and ση is

the same across industries. In vector form, ~η is the m × 1 vector of industry shocks

and ~ε is the n× 1 vector of firm shocks.

We assume shocks transmit from one node to another over time. In a bipartite

graph, one step in the network, enacted by an application of the A matrix, represents

an aggregation of a node’s own shock plus the weighted average of the shocks of

connected nodes. Two applications of the adjacency matrix (A2) to a shock vector

represents a complete transition of shocks back to their original node type. Therefore,

to study the transition of shocks through the network, we take snapshots of the

network after every complete transition of shocks, where the initial shock is a node’s

own shock plus the aggregation of its connected nodes’ shocks. During every complete

transition, we assume the shocks decay with rate δ.4

In particular, the snapshot of the growth rate of industry j at τ = 0 can be written

as the industry-specific growth shock plus the weighted average of the growth rates

of the firms operating in industry j. This is gj,0 = ηj +
∑n

i=1 hi,jεi. Therefore, the

vector of industry growth rates is ~gind,0 = ~η +H ′~ε. The growth rate of firms follows

the same pattern: the firm’s specific growth rate plus the industry-specific growth

rates weighted by the industry’s firm share. This is, ~gfirm,0 = ~ε + F~η. In matrix

notation, the initial growth rates at τ = 0 are

~g0 = (I + A′)~ν =

[

I H ′

F I

][

~η

~ε

]

=

[

~η +H ′~ε

~ε+ F~η

]

. (7)

The variance-covariance matrix of growth rates at τ = 0 is

Cov(~g0) =

[

σ2
ηI + σ2

εH
′H σ2

ηF
′ + σ2

εH
′

σ2
ηF + σ2

εH σ2
εI + σ2

ηFF
′

]

. (8)

The upper-left entry of this matrix represents the variance-covariance matrix of

industry growth rates. The diagonal elements reflect the variances of industry growth

4The decay reflects the fraction of the initial shock that is passed from one industry to another, with
the remainder absorbed either within the firm or industry. For example, a negative cash flow shock
to a segment that accounts for 10% of a firm’s sales may absorb more than 10% of the shock.



THE CONGLOMERATE NETWORK 17

rates which equal the variance of industry-specific shocks plus the variance of firm-

specific shocks scaled by the industry’s HHI. For industry j, the variance is

V ar(gj,0) = σ2
η + σ2

εHHIj. (9)

Thus, assuming all firm-level shocks are equally distributed, more concentrated indus-

tries have higher variance of growth rates. This is driven by concentrated industries’

greater exposure to relatively few idiosyncratic firm-specific shocks.

The off-diagonal elements of the industry-level variance-covariance matrix equal the

variance of firm-specific shocks scaled by the CoHHI between two industries. Thus,

the covariance in growth rates at τ = 0 is

Cov(gj,0, gk,0) = σ2
εCoHHIj,k. (10)

This derivation shows that CoHHI is directly proportional to the covariance of growth

rates, just as HHI is directly proportional to the variance of growth rates.

The variance-covariance matrix of firm-level growth rates is σ2
εI+σ

2
ηFF

′. This is the

dual interpretation of the industry-level matrix. On the diagonal, firm growth rates

have a variance equal to the firm-level variance plus industry-level variance scaled

by the firm’s HHI across segments. Diversified conglomerate firms with operations

in multiple sectors face lower industry-specific variance, compared to focused, single-

segment firms. The off-diagonal elements in the firm-level variance-covariance matrix

are equal to industry-specific variance scaled by firm-level CoHHI. Firms that operate

in the same industries have greater shared in-links and thus, have higher covariance

in their growth rates.

The off-diagonal n×m matrix, σ2
ηF

′ + σ2
εH

′, in Cov(~g0) reflects the covariance in

growth rates between firms and industries. This covariance is equal to the sum of

the firm-specific variance σ2
ε scaled by the strength of the link from the firm to the

industry plus the industry-specific variance scaled by the strength of the link from

the industry to the firm. Intuitively, the covariance of growth rates between firms and

industries is the sum of the firm and industry specific variance scaled by the strength

of the connection between the firm and industry.

Moving shocks forward one cycle in the network, the variance-covariance matrix of

growth rates at τ = 1 is

Cov(~g1) = δ2

[

σ2
ηH

′FF ′H + σ2
εH

′FH ′HF ′H σ2
ηH

′FF ′HF ′ + σ2
εH

′FH ′HF ′

σ2
ηFH

′FF ′H + σ2
εFH

′HF ′H σ2
εFH

′HF ′ + σ2
ηFH

′FF ′HF ′

]

.

(11)
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This variance-covariance matrix represents that as shocks pass through the network

over time, they repeatedly transmit from firms to industries and back to firms.

To help interpret the covariance matrix, we again focus on the industry-to-industry

portion of the covariance matrix. At τ = 1, shocks have made a full cycle in the

network, represented by the transmission network A2. For brevity of notation, we

denote the entry in row j and column k of F ′H as tj,k, which records the strength of

transmission from industry j to industry k. Using this notation, the variance of the

growth rate for industry j at τ = 1, after a full cycle in the network, is as follows:

V ar(gj,1) = δ2

[

σ2
η

m
∑

r=1

t2r,j + σ2
ε

m
∑

r=1

t2k,jHHIr + 2σ2
ε

m
∑

r=2

r−1
∑

s=1

ts,jtr,jCoHHIs,r

]

. (12)

This equation shows that after one cycle in the network, the variance of industry j’s

growth rate has three components. The first component is the variance of industry-

level shocks scaled by the sum of the square of transmission links from all other

industries into industry j. This reflects industry j’s exposure to all other industry

shocks through the conglomerate network. The second component is the firm-level

variance scaled by the sum of the transmission strength into industry j from all

other industries weighted by the other industries’ HHI measures. Thus, if industry

j has stronger connections to concentrated industries, its variance is higher because

of higher exposure to firm-level shocks in connected industries. Finally, the last

component is the sum of all combinations of industries’ CoHHI measure multiplied

by their transmission strengths and the variance of firm-level shocks.

The covariance of the growth rate of industry j and industry k at τ = 1, is as

follows:

Cov(gj,1gk,1) = δ2

[

σ2
η

m
∑

r=1

tr,jtr,k + σ2
ε

m
∑

r=1

tr,jtr,kHHIr + σ2
ε

m
∑

r=2

r−1
∑

s=1

(ts,jtr,k + tr,jts,k)CoHHIs,r

]

.

(13)

This equation shows that the covariance in the growth rates of industries j and

k is determined by the similarity of their exposure to industry shocks through the

transmission network plus the similarity of their exposure to firm-level shocks through

within-industry concentration and common in-links (CoHHI).
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II.E. The Centrality of the Conglomerate Network

To understand the long-run outcome of shocks transmitting through the network,

we consider the sum of the growth rates from τ = 0, . . . ,∞, as follows

∞
∑

τ=0

~gt =
[

I + δ(A′)2 +
(

δ(A′)2
)2

+
(

δ(A′)2
)3

+ · · ·
]

(I + A′) ~ν

=
[

I − δ(A′)2
]−1

(I + A′)~ν, (14)

where the infinite sum converges because A2 is a stochastic matrix. The term

[I − δ(A′)2]
−1

is the Leontief inverse. Thus, Equation 14 represents the transfor-

mation of initial shocks into industry and firm growth rates after passing through the

conglomerate network an infinite number of times. This can be interpreted as the

steady state outcome of the transition matrix A2. In addition, as Carvalho (2014)

points out, the Leontief inverse is equivalent to the Katz-Bonacich eigenvector cen-

trality of a network. Thus, Equation 14 also implies that the long-run industry and

firm growth rates equal the product of their Katz-Bonacich eigenvector centrality in

the conglomerate network with their initial shock.

These properties of the conglomerate network are identical to the properties of the

industry-level input-output networks studied in Acemoglu, Carvalho, Ozdaglar, and

Tahbaz-Salehi (2012) and the firm-level input-output network studied in Herskovic,

Kelly, Lustig, and Van Nieuwerburgh (2020). In particular, both papers show that

the Leontief inverse describes how network structure affects aggregate growth rates.

Acemoglu et al. include the Leontief inverse in a measure they call the “influence

vector” ~v of an industry, which is equivalent to both Katz-Bonacich eigenvector cen-

trality and the “sales vector” of the economy, in which each element reflects sector

i’s sales as a fraction of the total sales in the economy. Acemoglu et al. note that

the second representation is related to Gabaix’s finding that firm-level productivity

contributes to aggregate productivity in proportion with firm size.

Our conglomerate network has the same representations of the influence vector

as the IO network, except the weights in our measure represent the strength of the

bi-partite network of conglomerates. In particular, the eigenvector centrality of the

industries and firms in our network matrix A2 is also the sales vector of the economy,

~v. Thus, like Acemoglu et al., given a vector of idiosyncratic industry shocks ~η, the

aggregate shock to the economy is ~vind
′~η. Equivalently, the aggregate shock to the

economy from firm-level shocks is ~vfirm
′~ε, as in Herskovic et al.
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In sum, our model generates the same implications for the importance of a single

industry or firm in the conglomerate network as derived in the production network,

but with an important distinction. In our model, firms are diversified, unlike in

Gabaix (2011), which affects their centrality, and thus, their influence on the aggregate

economy. Herskovic, Kelly, Lustig, and Van Nieuwerburgh (2020) present a similar

intuition based on the concentration of customers in the input-output network. Our

work is similar to Herskovic et al. because they allow for shocks at different levels

of aggregation, including firm, industry, and economy-wide shocks. Our model is

distinct from Herskovic et al. because we focus on connections through conglomerate

ownership, whereas they focus on customer-supplier connections.

III. The Empirical Conglomerate Network

III.A. Data Sources

We collect segment level information of conglomerate firms from the Compustat

Historical Segment data. For corporate segments that represent at least 10 percent

or more of consolidated sales in a different industry, SFAS No. 14 requires that firms

report accounting information on a segment-level basis for fiscal years ending after

December 15, 1977. To rectify the inadequacies of SFAS No. 14, the Financial Ac-

counting Standards Board (FASB) further issued SFAS No. 131 in June 1997, which

requires that, for fiscal periods beginning after December 15, 1997, firms identify

industry segments for external reporting purposes in the manner that management

views operating segments for internal decision-making purposes. To ensure the time-

series comparability of our conglomerate network, we use the Compustat Historical

Segment data from 1997 to 2018 to construct our conglomerate network. Specifically,

for each segment, we collect the following four variables: net sales, capital expendi-

tures, identifiable total assets, and the primary NAICS code of the segment.5 Though

our framework provides both firm-level and industry-level predictions, we focus on the

industry-level network to reduce selection bias in publicly-traded company data. In

Section III.A.2, we discuss truncation bias concerns from using only publicly-traded

firms.

One complication of the long-time horizon considered in this paper is that the

scheme of industry classifications changes over time, such as the change from the SIC

5Though we would like to study productivity, the variables available at the segment level do not
allow it.
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to the NAICS in 1997 and subsequent versions of NAICS from 2002 to 2017. To

obtain the time-consistent industry definitions, we follow Pierce and Schott (2016)

and create “families” of industry codes that group related NAICS categories together

across different industry classification schemes. For example, if an industry code splits

into several codes from 1997 to 2002, the industry code in 1997 and its subsequent

“children” would be grouped into the same family. Therefore, unless otherwise noted,

industries in this paper refer to these families. This adjustment allows us to control

for time-invariant industry properties using fixed effects.

A.1. Industry Definitions

One potential concern with our framework is that firm boundaries are definite, but

industry boundaries are subjective. We can address this concern in a few ways. First,

we note that NAICS codes were developed in the 1990s by a consortium of federal

economic and statistical agencies, including the Bureau of Economic Analysis, US

Department of Commerce, Bureau of the Census, and the Bureau of Labor Statistics.

These agencies designed the classification system on the principle that industry defi-

nitions should be based on a single economic concept of the similarity of production

processes. The boundaries of industries are limited by the degree of homogeneity of

the production process among the establishments in the industry, subject to a min-

imum threshold of economic significance. Thus, though industry definitions are not

as clearly delineated as corporate ownership, they are not arbitrary.6

Empirical evidence on the role of sectoral shocks for aggregate outcomes also sup-

ports the validity of industry codes. In particular, Carvalho and Gabaix (2013) shows

that both the sectoral-level sales vector of the economy (as in Acemoglu, Carvalho,

Ozdaglar, and Tahbaz-Salehi (2012)) as well as the firm-level sales vector (as in Gabaix

(2011)) help explain aggregate volatility. Because their formulation uses only the

changing weights of sectors and firms in total output, their results suggest that the

boundaries of industries are defined in an economically meaningful way and are not

arbitrarily redefined to maintain equality in the size of sectors.

The second way we address this potential concern is to control for industry links

based on the alternative industry definitions provided by Hoberg and Phillips (2016)

(HP). HP use the text of the product definitions provided in firms’ 10-K filings to

identify the similarity of two firms’ outputs. Thus, HP’s definitions are likely to be

6More information on the development and principles guiding NAICS is available on the US Census
Bureau’s website: https://www.census.gov/naics/?008967

https://www.census.gov/naics/?008967
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closer to a classification scheme based on the demand-side, compared to NAICS’s

scheme based on the supply-side. The third way we address this concern is to use a

different level of industry aggregation in robustness tests, described below.

A.2. Truncation Bias

A potential concern with using Compustat data is that we only observe publicly-

traded firms. We first note that both Atalay, Hortaçsu, Roberts, and Syverson (2011)

and Herskovic, Kelly, Lustig, and Van Nieuwerburgh (2020) face the same issue when

constructing empirical estimates of input-output networks. Atalay et al. show that

though their sample is truncated, they do not observe bias in the network structure of

the I-O links: the fraction of missing links is the same for central or peripheral nodes.

Herskovic et al. note that measures based on a Herfindahl formulation (such as our

CoHHI measure) give greater weight to larger firms, which reduces truncation bias.

Nevertheless, the bias from using Compustat data reduces the correlations between

key moments in their model. Thus, the truncation bias caused by Compustat data

limitations makes it more difficult to identify statistically significant relationships in

the empirical analysis. We also provide robustness tests later in the paper to better

understand the potential for truncation bias. In particular, we re-estimate our main

regressions using subsamples of Compustat data that are truncated by size thresholds

to test whether our results differ when we exclude smaller firms.

III.B. The Structure of the Conglomerate Network

Networks exist across a continuum of types. On one extreme, random graphs

contain nodes that are connected to each other with an equal probability (Erdős

and Rényi, 1959). Thus, random graphs do not have central hubs. In addition, the

number of connections to a node (degree) in a random graph exhibits relatively little

variation around the average degree. Second, random graphs are not clustered, in

which a nodes’ neighbors are also connected with each other. At the other extreme of

network types are ultra small world networks. These networks have very large hubs,

with undefined degree variance. This means that the degree of an arbitrary network

varies widely around the mean. The presence of prominent hubs in these networks

reduces the average distance between all nodes and creates clusters of nodes. See

Barabási (2016) for a detailed discussion of network types.
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One way to measure the structure of a network is by its degree distribution. Ran-

dom graphs have symmetric binomial degree distributions. Ultra small world net-

works have fat tailed degree distributions with long right tails indicating that a small

number of nodes have many connections and a large number of nodes have few con-

nections. A particular fat tailed distribution is the power law distribution, also known

as the scale free distribution, p(X > x) ∼ Cx−α, where α > 2 is the scaling param-

eter. The lower is the α, the longer is the right tail. As α increases above 3, the

network begins to resemble a random network.

B.1. The Structure of the Conglomerate Network in the Cross-Section

Figure III represents the complementary cumulative degree distribution of the con-

glomerate network in 1997 in log scale. A linear relationship indicates a fat tailed,

power law distribution. The dashed line in the figure corresponds to an α of 3.44, es-

timated following Clauset, Shalizi, and Newman (2009). This α is comparable to 3.1

for the input-output network of industries, as estimated in Ahern and Harford (2014).

Over our sample period, α is estimated to be 2.8 in an average year, though in 60%

of years we reject the hypothesis that the network is power law distributed. Thus,

these statistics show that the degree distribution of the conglomerate network has a

substantially fat tail, even if not precisely a power law distribution. This means that

the network is characterized by a relatively few hub industries with many connections

to other industries and a relatively large number of industries with few inter-industry

connections.

Additional network statistics confirm that the conglomerate network has a fat tail.

In an average year, the average industry is connected to 6.8 other industries (degree

centrality), though the median industry is connected to 3.3 other industries, consistent

with a skewed degree distribution. The clustering coefficient of the average industry

is 39%; for the median industry it is 32%, which is large relative to clustering in

social networks. Finally, in an average year, the maximum path length between any

two industries in the largest component is 7.5 links (7 at the median). Given that

the largest component has 573 industries in an average year, this reflects that the

conglomerate network exhibits small-world network features.7

7We discuss the statistics for the binary network for ease of exposition, but the interpretation of the
weighted networks is similar. We report statistics for the giant component of the network, which is
the largest set of interconnected nodes in a network. In an average year, 75% of industries are in the
largest connected component. The remaining industries are typically in very small components of
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Figure III
Degree Distribution of Binary Conglomerate Network

This figure represents the distribution of degree centrality in log-log scale in the 1997
binary conglomerate network. Circles represent the degree centrality of industries,
indicating how many direct connections an industry has to other industries. The
dashed line is the from the estimate of α in the power distribution P (k) = ck−α.

B.2. Time-Series Evolution of the Conglomerate Network

Figure IV plots the time series of network statistics. First, the power law scaling

parameter α has decreased over this period, while the variation in degree across nodes

and clustering increased. This indicates that the network has evolved towards an ultra

small world network with more prominent hubs. Second, from 2000 to 2018, average

degree centrality decreased by more than 30% while eigenvector centrality decreased

less noticeably. These results indicate that the average industry reduced its number

of connections by removing connections to more peripheral industries.

These results highlight the changes in conglomerate ownership over the last two

decades. While fewer industries are connected through conglomerate firms, the con-

nections that remain are stronger and more centralized. In addition, industries are

now more clustered together through conglomerates than in the past. This is con-

sistent with Hoberg and Phillips (2021) which uses text of product descriptions to

show that conglomerate firms have become more focused in related industries over

our sample period.

one or two industries. We also exclude self-loops from the statistics, where an industry is connected
to itself.
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Figure IV
Time Series of the Binary Conglomerate Network

Five summary statistics are calculated yearly on the binary conglomerate network.
Mean degree is the number of inter-industry links into an average industry. Eigen-
vector centrality is the eigenvector value for the largest eigenvalue of the network
for an average industry. Clustering coefficient is the fraction of industries that are
connected to nodes that are also connected to each other for the average industry.
Power law α is the estimate of the scaling parameter of the power law distribution
P (x) = Cx−α. S.D. Degree/Mean Degree is the standard deviation of industry de-
gree divided by the average degree. All statistics are normalized by dividing by the
values in 1997.
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Table I
Most Central Industries in the Conglomerate Network

This table lists the most central industries in the conglomerate network, using four different networks. The binary network is an
undirected, unweighted network that records any connection between industries through conglomerate firms. The transmission
network represents directed, weighted connections through the transmission from industries to firms and back to industries. The
shared in-link network represents an undirected, weighted network of industry connections based on common conglomerate firms
that span industries. The shared out-link network represents an undirected, weighted network of industry connections based on
firms’ common exposures to industry shocks. Panel A presents industries based on degree centrality. For the binary network, this
is a count of links. For the weighted networks, the degree centrality is the sum of the weights per industry. Eigenvector centrality
is calculated as Katz-Bonacich centrality with an attenuation factor equal to 90% of the max attentuation. This measure accounts
for the centrality of the industries to which an industry is connected, but also allows all industries a minimum level of centrality.
The top five industries listed are the industries that appeared most often in the yearly top five industry list across 1997 to 2018.

Binary Network Transmission Network Shared In-Link Network Shared Out-Link Network

Panel A: Degree Centrality

General industrial machinery Motor vehicle parts Cheese; natural/processed General industrial machinery
Personal/business credit Electric services Frozen specialties Electric services
Patent owners and lessors Petroleum refining Roasted coffee Gas production/distribution
Mortgage banks/dep. functions Motor vehicles/bodies House refrig./freezers Crude petroleum/nat. gas
Other plastics/mechanical rubber Apparel and accessories Cookies and crackers Computer systems design

Panel B: Eigenvector Centrality

Personal/business credit Petroleum refining Roasted coffee Electric services
Mortgage banks/dep. functions Crude petroleum/nat. gas Cheese; natural/proc. Gas production/distribution
Computer integrated systems Motor vehicle parts Frozen specialties Crude petroleum/nat. gas
General industrial machinery Electric services Cookies and crackers Natural gas transmission
Patent owners and lessors General industrial machinery Groceries & rel. prods. Petroleum refining
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B.3. Central Industries in the Conglomerate Network

Table I presents the most central industries in four versions of the conglomer-

ate network: the binary network, transmission network, shared in-links, and shared

out-links. The binary network is an unweighted network where links are defined by

the existence of any conglomerate link between industries, without regard to their

strength. The top five industries in each network are similar whether we define cen-

trality using the sum of the connections (degree centrality) in Panel A or eigenvector

centrality in Panel B.

Within the transmission network, the most central industries include motor vehicle

parts, electric utility services, and petroleum related industries. High centrality in

this network indicates that these industries are at the center of economic activity that

is transmitting through conglomerate firms. The most central industries in the Co-

HHI network of shared in-links are concentrated in the food industry: coffee, cheese,

frozen foods, etc. High centrality in this industry reflects that these industries have

high CoHHI scores with many other industries. In particular, the food industry is

dominated by firms that operate in multiple industries with similar market shares

in each. Finally, the most central industries in the shared out-link network are gen-

eral industrial machinery, electric services, natural gas and petroleum, and computer

systems design. These are industries that are highly connected to other industries

through conglomerates with similar levels of exposure to common industry shocks.

IV. Comovement of Industry Growth Rates: Empirical Evidence

IV.A. Cross-Sectional Tests

First, we estimate the cross-sectional industry-to-industry variance-covariance ma-

trix in Equation 8. In particular, we regress the time-series covariance of industry

growth rates on the time-series average strength of industry connections in the CoHHI

network, plus a dummy variable that indicates the diagonal entries in the matrix (i.e.,

an industry paired with itself).8 We study two industry growth rates in our baseline

tests: sales growth and asset growth.

The regression results are as follows,

8Equation 8 relates instantaneous growth rates with industry network at t = 0. Because we do not
observe instantaneous growth rates at each period, we proxy for these relationships using growth
rates observed over the time series.
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Cov(gsales,i, gsales,j) = 0.406 + 5.171× CoHHI + 8.864× Same Industry Dummy

(0.029) (1.097) (0.571)

Cov(gassets,i, gassets,j) = 0.293 + 3.028× CoHHI + 10.354× Same Industry Dummy,

(0.029) (1.085) (0.660)

where coefficients and industry-paired clustered standard errors are reported in per-

centages with a sample size of roughly 250,000 industry-pair observations.

These results show that there is a positive cross-sectional correlation between Co-

HHI and the covariance of sales growth and asset growth rates. This implies that

industries with higher CoHHI connections also have higher comovement of funda-

mental economic growth rates. The comovement of industry growth rates is driven

by conglomerate firms with large market shares in multiple industries.9

Next, the the positive coefficient on the dummy variable reflects that more concen-

trated industries have more volatile growth rates. This result is consistent with the

model’s intuition that concentrated industries have greater exposure to firm-specific

shocks. These results show that industry volatility is driven, in part, by large firms as

in Gabaix (2011), but only if the firms have large market shares within the industry.

IV.B. Panel Tests

Second, we estimate panel regressions with fixed effects to isolate the effect of

changes in the conglomerate network on within-industry-pair changes in comovement.

To estimate a panel model with yearly observations, we cannot use the time-series

covariance as our dependent variable. Instead, to motivate our empirical model, note

that the squared difference of two industries’ growth rates at τ = 0, is as follows:

(gj − gk)
2 = (ηj − ηk)

2+2 (ηj − ηk)

(

n
∑

i=1

hi,jεi −

n
∑

i=1

hi,kεi

)

+

(

n
∑

i=1

hi,jεi −

n
∑

i=1

hi,kεi

)2

.

(15)

In expectation, the squared difference of growth rates is:

E
[

(gj,1 − gk,1)
2
]

= E(g2j,1) + E(g2k,1)− 2E(gj,1gk,1)

= 2σ2
η + σ2

ε (HHIj +HHIk)− 2σ2
εCoHHIj,k. (16)

9In unreported tests, we verify that our results hold when we estimate the network correlations using
exponential random graph models, following Ahern and Harford (2014).
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The signs of the coefficients imply that, all else equal, two concentrated industries

are likely to have less similar time series of growth rates, while two co-concentrated

industries are likely to have more similar growth rates. This reflects that concentrated

industries have greater idiosyncratic firm-specific risk, but co-concentrated industries

share common firm-level risk.

To test this relationship empirically, we estimate a more generalized and flexible

version of the model’s prediction in the following regression:

(gj,τ − gk,τ)
2 = γ1Shared In-Links (Co-HHI)jk,τ (17)

+ γ2Shared Out-Linksjk,τ

+ φ(HHIj,τ +HHIk,τ)

+ ρτ + δjk + ψControlsjk,τ + εjk,τ ,

where gi,τ represents industry i’s growth rate at time τ , Shared In-Links (Co-HHI)ij,τ ,

and Shared Out-Linksij,τ represent network connections at time τ , ρτ is a time fixed

effect, δij is an industry pair fixed effect, and Controls include time-varying industry-

pair control variables, discussed below. This regression is estimated using undirected

industry-pairs because the explanatory variables represent undirected links. We in-

clude Shared Out-Links in our regression tests, even though they do not appear in

the theoretical formulation, because shocks might transfer in the opposite direction

than we have assumed. Our goal is not to calibrate our model, but to use it as a

guide for understanding the patterns in the data.

The regression above does not include the transmission network because it is derived

from the covariance of growth rates at the initial period. If we allow for higher order

connections in the network, we need to include the transmission network. As shown

in Equation 13, the covariance of growth rates after one cycle in the network is a

function of HHI, CoHHI, and the transmission network. We estimate a more general

empirical model, as follows:

(gj,τ − gk,τ)
2 =β1Transmissionjk,τ + β2CoHHIjk,τ (18)

+ φ(HHIj,τ +HHIk,τ) + ρτ + δjk + ψControlsjk,τ + εjk,τ ,

where the Transmission variable is defined as a dummy variable if industry pair (j, k)

is positive in matrix H ′FF ′H which reflects industries that are two links away in the

transmission network.

In both regressions, the industry pair fixed effects, δij , account for time-invariant

cross-sectional variation in industry pairs (directed or undirected). This controls for
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any cross-industry trait that remains stable over time, such as the nature of the

product (e.g., goods vs. services), the level of government regulation, access to cap-

ital, and the importance of intangible assets. We also include time fixed effects, ρτ ,

to control for economy-wide fluctuations and to isolate within-industry pair fluctua-

tions. Finally, we also run specifications that use a dummy variable that represents

the presence of a connection in the network, without regard to the strength of the

connection. For the shared links networks, this dummy variable is identical in the

in-links and out-links networks.10

The regressions also include variables to control for customer-supplier relationships

and product-market similarities. We measure the customer-supplier connections be-

tween industry pairs using data from the industry-by-industry total requirement table

from the Benchmark Input-Output (IO) Accounts released by the Bureau of Economic

Analysis (BEA). These data measure the dollar amount of intermediary industry out-

put required per dollar of final demand. We use the most recent data for years 1997,

2002, 2007, 2012, and 2017. For example, from year 1997 to 2001, we use the 1997

total requirement table. In a few cases, our industry pairs cannot be matched to the

IO industries; however our results are qualitative unchanged if we drop these industry

pairs from the sample instead.

Second, we control for time-varying asset similarities between industry pairs based

on the text-based product similarity measure of Hoberg and Phillips (2016) (HP).

To convert their similarity measures to our industry pairs, we identify stand-alone

firm-pairs with positive HP similarity in each industry pair. We then calculate the

average similarities between these firm pairs in our industry-pairs to proxy for asset

similarity. Specifically, for industry pair (i, j), with m stand-alone firm-pairs (k, l)

with positive HP similarity, where k denotes firms in industry i and l denotes firms

in industry j, the asset similarity of industry pair (i, j) is
∑

m HPk,l

m
, where HPk,l is

the text-based product similarity of the firm pair (k, l). We assign a zero to industry

pairs with missing similarity scores because this implies the HP measure is below a

minimum threshold.

In sum, these regressions are designed to isolate how time-series variation in the

strength of the connection between the industries in the conglomerate network ex-

plain time-series variation in the comovement of two industries’ growth rates. If

two industries’ connection through conglomerates becomes stronger, we expect to see

10We cluster standard errors at the industry-pair level, but our results persist if we double cluster
standard errors by each industry of the pair.
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stronger comovement in their growth rates. After presenting these baseline results,

we consider sampling bias and endogeneity in robustness tests.

IV.C. Summary Statistics

Table II provides summary statistics for all of variables used in the panel regres-

sions. In the median industry-year, sales growth is 2.67%, asset growth is 1.1%, and

employment growth is -0.90%. Squared differences in these rates vary considerably.

In an average year, the squared difference of sales growth is 20.88%, compared to

5.56% at the median. Asset growth is similar, but squared differences in employee

growth rates are much lower. This indicates that there is less variation across indus-

tries in employee growth than sales and asset growth. All of the network measures

are skewed because the network is sparse, with most industry pairs having no con-

nection. The dummy variables indicates that 1.4% of industry-pairs are connected

in the conglomerate network, which is similar in magnitude to the Hoberg-Phillips

measure and the IO links.

IV.D. Correlations of Alternative Industry Connections

Figure V presents the yearly cross-sectional correlation between the measures of the

conglomerate network, the input-output network, and Hoberg-Phillips industry sim-

ilarity measures. Observations are based on directed industry pairs, excluding own

industry loops. Panel A shows that the strength of the transmission link between in-

dustry pairs is more correlated with the strength of shared in-links (about 50%) than

with the strength of shared out-links (about 28%). This represents, in part, that

there is more variation across in-links than across out-links because market shares

vary more widely across industries than do industry shares across firms. Shared

in-links and out-links are less correlated with each other (about 11%).

Panel B shows that shared in-links and the transmission links have persistently low

correlations (less than 6%) with the Hoberg-Phillips measure of industry connections.

In contrast, shared out-links in the conglomerate network display higher correlations

(about 14%) and exhibit larger time-series variation. These results reflect that the

similarity of product descriptions across industries from HP is tied more closely to

a firm’s industry share than to the firm’s market share. This follows because HP

similarity measures are based on the firm’s perspective of its products, rather than

the industry’s perspective of its leading firms.
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Table II
Summary Statistics: Panel Data

This table presents summary statistics for the variables used in the regression analysis. All variables
are in percentages. Summary statistics are presented for non-directed industry-pair observations.

Percentile

Mean S.D. 25th 50th 75th Observations

Sales growth −0.274 32.654 −12.292 2.668 14.639 3, 827, 922
Asset growth −0.954 32.751 −12.480 1.102 13.506 3, 781, 760
Employment growth −1.309 9.785 −6.085 −0.897 3.446 3, 316, 726
(Sales growthi − Sales growthj)

2 20.884 35.911 0.947 5.557 24.139 3, 570, 850
(Asset growthi − Asset growthj)

2 21.693 36.750 0.997 5.844 25.814 3, 482, 085
(Employment growthi − Employment growthj)

2 1.687 3.278 0.092 0.458 1.674 3, 269, 717
Shared in-links (Co-HHI) 0.039 1.112 0.000 0.000 0.000 4, 113, 989
Shared out-links 0.162 3.269 0.000 0.000 0.000 4, 113, 989
Shared links dummy 1.396 11.731 0.000 0.000 0.000 4, 113, 989
Transmission 0.064 1.403 0.000 0.000 0.000 4, 113, 989
Transmission dummy 1.396 11.731 0.000 0.000 0.000 4, 113, 989
HHI 52.977 31.230 26.546 47.127 83.672 4, 113, 989
Sum of HHI 102.521 44.546 66.740 103.022 132.622 4, 113, 989
Input-Output link 1.132 9.542 0.000 0.004 0.063 4, 113, 989
Hoberg-Phillips similarity 0.037 0.437 0.000 0.000 0.000 4, 113, 989
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Figure V
Yearly Cross-Sectional Correlation of Industry Relations

Each panel presents the yearly cross-sectional correlation of an industry-pair measure,
excluding own-industry pairs. Panel A presents the correlations of the conglomerate
network measures, Panel B presents the correlations of the conglomerate network
measures with Hoberg-Phillips (HP) measures of industry connections, and Panel C
presents the correlations of the conglomerate network with the Input-Output network
(IO).
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Panel C of Figure V shows that the conglomerate network has relatively little

correlation with the input-output network (less than 7%), though the correlation

is increasing during the sample period. This suggests that vertical integration is

increasing from 1997 to 2018, relative to unrelated diversification. This is consistent

with Figure IV, which shows that conglomerate firms have become more focused in

central industries, rather than peripheral industries.

In sum, the results in Figure V show that the conglomerate network is not just

a proxy for existing measures of industry connectedness. Instead, the conglomerate

network represents a unique form of inter-industry connections. However, we include

these variables in our tests as alternative explanations of industry comovement.

IV.E. Baseline Results

Table III presents estimates of the relationship between shared in-links and out-

links on the comovement of industry growth rates. For sales growth and asset growth,

an increase in the strength of shared links is negatively correlated with the squared

differences in growth rates. Thus, consistent with our prediction, as industries become

more closely connected in the conglomerate network, their growth rates comove more

closely. Because we control for year fixed effects and industry-pair fixed effects, these

results are not driven by cross-sectional differences in the nature of industries, nor

are they explained by economy-wide fluctuations in the time-series of growth rate

levels or correlations. In addition, the results are not driven by customer-supplier

relationships or asset similarities.

Also consistent with the model, the sum of HHI is positively correlated with squared

differences in growth rates with a high degree of statistical significance. This reflects

that industries with greater internal concentration have weaker connections to other

industries. Thus, an increase in an industry’s HHI reduces the comovement of its

growth rate with other industries.

It is easiest to interpret the magnitude of the dummy variable for the squared

difference of growth rates. For both outcome variables, the presence of a connection

reduces the squared difference in growth rates by about 8.5% of the average squared

difference and about 31% of the median squared difference. For comparison, a one

standard deviation increase in the sum of HHI is associated with an increase of squared

differences in growth rates equal to 45% of the median for sales growth and 29% of

the median for asset growth.
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Table III
Comovement of Industry Growth and Shared Network Links

This table presents coefficient estimates from panel regressions where the dependent variable is
(gk − gj)

2, where gi is the growth rate of industry i for sales (Panel A) and assets (Panel B).
Variable definitions are provided in the text. All regressions include industry-pair and year fixed
effects. Coefficients and industry-pair clustered standard errors (in parentheses) are in per-
centages. Statistical significance indicated by ∗∗∗, ∗∗, and ∗ for significance at 0.01, 0.05, and 0.10.

Panel A: Sales growth

Shared in-links (Co-HHI) −22.494∗∗∗ −21.710∗∗∗

(2.583) (2.594)
Shared out-links −4.897∗∗∗ −3.552∗∗∗

(1.214) (1.147)
Shared links dummy −1.722∗∗∗

(0.215)
Sum of HHI 2.513∗∗∗ 2.508∗∗∗ 2.511∗∗∗ 2.499∗∗∗

(0.112) (0.112) (0.112) (0.112)
Input-Output link 1.027∗∗∗ 1.025∗∗∗ 1.029∗∗∗ 1.036∗∗∗

(0.361) (0.361) (0.361) (0.361)
Hoberg-Phillips similarity −20.894∗∗∗ −20.580∗∗∗ −20.808∗∗∗ −20.598∗∗∗

(4.362) (4.355) (4.360) (4.355)
Industry-pair and year fixed effects Yes Yes Yes Yes
Adjusted R2 0.068 0.068 0.068 0.068
Observations 3,563,872 3,563,872 3,563,872 3,563,872

Panel B: Asset growth

Shared in-links (Co-HHI) −23.258∗∗∗ −22.459∗∗∗

(2.635) (2.643)
Shared out-links −5.042∗∗∗ −3.634∗∗∗

(1.455) (1.363)
Shared links dummy −1.881∗∗∗

(0.226)
Sum of HHI 1.688∗∗∗ 1.682∗∗∗ 1.685∗∗∗ 1.672∗∗∗

(0.116) (0.116) (0.116) (0.116)
Input-Output link 0.193 0.189 0.194 0.201

(0.367) (0.367) (0.367) (0.367)
Hoberg-Phillips similarity −29.959∗∗∗ −29.653∗∗∗ −29.878∗∗∗ −29.656∗∗∗

(5.658) (5.641) (5.654) (5.639)
Industry-pair and year fixed effects Yes Yes Yes Yes
Adjusted R2 0.054 0.054 0.054 0.054
Observations 3,474,363 3,474,363 3,474,363 3,474,363
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Next, Table IV presents the estimates of the transmission network on the comove-

ment of industry growth rates. The estimates show that the transmission network

is negatively and significantly related to difference in industry growth rates for sales

and asset growth. This means that when two industries become connected through

two links of the transmission network, their growth rates comove more closely. As

before, the sum of industry HHIs has the opposite relationship to the transmission

network, consistent with the model’s prediction.

We also estimate industry-level tests of the effect of distance in the conglomerate

network on the comovement of industry growth rates. In particular, we estimate each

industry’s exposure to the growth rates of other industries through the conglomerate

network at different distances. To calculate industry j’s exposure to industries that

are at a distance of one, we calculate the weighted average of the growth rates of

all other industries, where the weights are the strength of the connections between

industry j and the other industries in the transmission network. For a distance of two,

we take the average growth rate of all industries that are exactly two links away from

industry j in the transmission network. Similarly, we calculate the average growth

rate of industries that are at industry j’s maximum distance, excluding industries

that are not connected at any distance to industry j.

Table V shows that industries growth rates are higher when the growth rates of

connected industries’ growth rates are higher. The effect is largest for industries that

are at a distance of one, while the results are still positive for industries that are

at a distance of two in the transmission network for sales growth. This shows that

industries comove with other industries in the network, even if they are not directly

connected. Growth rates of industries at the maximum distance are uncorrelated.

As expected, the longer is the distance between two industries in the network, the

weaker is their comovement. Because these results control for IO-weighted growth

rates of other industries, year fixed effects, and industry fixed effects, the results are

not driven by customer-supplier links, macroeconomic fluctuations, or cross-sectional

heterogeneity in industry traits.

To provide additional evidence that the results are driven by the conglomerate

network, we calculate a placebo variable in which industries are randomly assigned

a transmission strength using the empirical distribution of linkages in the data. If

the results were driven by macroeconomic factors, rather than connections in the

conglomerate network, the results would persist in the placebo test. However, Table V

shows that the placebo variable is unrelated to an industry’s growth rate.
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Table IV
Comovement of Industry Growth and the Transmission Network

This table presents coefficient estimates from panel regressions where the dependent variable
is (gk − gj)

2, where gi is the growth rate of industry i for sales (Panel A) and assets (Panel
B). Transmission dummy represents industry pairs that are two links away in the transmission
matrix. Shared links dummy represents industries that are one link away in the shared links
matrix. All regressions include industry-pair and year fixed effects. Coefficients and industry-
pair clustered standard errors (in parentheses) are in percentages. Statistical significance
indicated by ∗∗∗, ∗∗, and ∗ for significance at 0.01, 0.05, and 0.10.

Panel A: Sales growth

Transmission dummy −1.231∗∗∗ −1.201∗∗∗ −1.185∗∗∗

(0.073) (0.073) (0.073)
Shared in-links (Co-HHI) −20.453∗∗∗

(2.588)
Shared links dummy −1.282∗∗∗

(0.216)
Sum of HHI 2.403∗∗∗ 2.408∗∗∗ 2.398∗∗∗

(0.113) (0.113) (0.113)
Input-Output link 1.029∗∗∗ 1.034∗∗∗ 1.040∗∗∗

(0.361) (0.361) (0.361)
Hoberg-Phillips similarity −20.873∗∗∗ −21.055∗∗∗ −20.798∗∗∗

(4.362) (4.366) (4.360)
Industry-pair and year fixed effects Yes Yes Yes
Adjusted R2 0.068 0.068 0.068
Observations 3,563,872 3,563,872 3,563,872

Panel B: Asset growth

Transmission dummy −1.244∗∗∗ −1.212∗∗∗ −1.192∗∗∗

(0.077) (0.077) (0.078)
Shared in-links (Co-HHI) −21.224∗∗∗

(2.636)
Shared links dummy −1.437∗∗∗

(0.227)
Sum of HHI 1.577∗∗∗ 1.582∗∗∗ 1.572∗∗∗

(0.116) (0.116) (0.116)
Input-Output link 0.194 0.199 0.204

(0.367) (0.367) (0.367)
Hoberg-Phillips similarity −29.939∗∗∗ −30.119∗∗∗ −29.854∗∗∗

(5.657) (5.667) (5.650)
Industry-pair and year fixed effects Yes Yes Yes
Adjusted R2 0.054 0.054 0.054
Observations 3,474,363 3,474,363 3,474,363
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Table V
Industry-Level Growth and Transmission Network Links

This table presents coefficient estimates from panel regressions where the dependent variable is the
industry growth rate of sales (Panel A) and assets (Panel B). Transmission-weighted growth is the
growth rate of all other industries, weighted by their transmission link in the conglomerate net-
work. Transmission-weighted placebo randomizes the transmission strength across industries. Aver-
age growth at a distance of two (longest distance) is the average growth rate of industries that are
exactly two links (maximum distance) away from the focal industry. IO-weighted growth is the growth
rate of other industries weighted by their IO strength to the focal industry. Coefficients and industry-
clustered standard errors (in parentheses) are in percentages. Statistical significance is indicated by
∗∗∗, ∗∗, and ∗ for significance at 0.01, 0.05, and 0.10.

Panel A: Sales growth

Transmission-weighted growth 19.157∗∗∗ 18.233∗∗∗ 18.260∗∗∗ 18.026∗∗∗

(2.111) (2.262) (2.289) (2.297)
Transmission-weighted placebo 2.677

(1.815)
Average growth at distance of two 12.928∗

(6.720)
Average growth at longest distance −0.827

(1.995)
IO-weighted growth 9.460∗∗∗ 13.826∗∗∗ 9.214∗∗∗ 8.988∗∗∗

(3.322) (3.309) (3.350) (3.386)
Industry & year fixed effects Yes Yes Yes Yes Yes
Adjusted R2 0.053 0.061 0.052 0.061 0.063
Observations 11,517 10,275 10,282 10,157 9,920

Panel B: Asset growth

Transmission-weighted growth 16.082∗∗∗ 15.006∗∗∗ 14.993∗∗∗ 14.694∗∗∗

(1.915) (2.066) (2.097) (2.099)
Transmission-weighted placebo 2.878

(1.821)
Average growth at distance of two −3.368

(6.816)
Average growth at longest distance −0.214

(1.688)
IO-weighted growth 3.810 6.463∗ 3.584 3.637

(3.541) (3.533) (3.559) (3.576)
Industry & year fixed effects Yes Yes Yes Yes Yes
Adjusted R2 0.036 0.041 0.034 0.040 0.042
Observations 11,377 10,161 10,168 10,045 9,834
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V. Endogeneity Concerns: A Quasi-Natural Experiment

Conglomerate firms do not randomly choose the industries in which they operate.

Instead, it is reasonable to believe that firms choose to diversify into industries that

tend to comove with each other, which could produce correlations similar to the results

we have shown. Thus, in contrast to our hypothesis that conglomerates transmit

shocks from one industry to another, it is possible that the entirety of the shocks

would have been transmitted even without the conglomerate network. In this section,

we address this concern.

First, it is important to recognize that the conglomerate network is not formed

completely through endogenous choice. In the model, the strength of the ties be-

tween industries is based on both the firms’ industry shares and firms’ market shares.

While firms endogenously choose the industries in which they operate, they do not

endogenously choose their market shares in each industry. In particular, CoHHI is a

measure of the commonality of market shares held by the same firm in two different

industries, not just the choice to operate in both industries. In addition, our model

generates predictions about the relationship between HHI and comovement, which are

also supported in the empirical results. Because firms do not endogenously choose

HHI, these results cannot be caused by the endogenous choice of firms.

Second, to the degree that the conglomerate network is endogenously determined,

it is important to note that all of our results persist after controlling for industry-

pair fixed effects. Thus, any time-invariant factor that leads industries to comove

is absorbed by these fixed effects. In addition, we control for remaining time-series

variation that is driven by major economic determinants of conglomeration, includ-

ing vertical customer-supplier relationships and complimentary assets of Hoberg and

Phillips. For our results to be spurious, there would need to be an underlying time-

varying factor explaining all of the remaining time-series correlation that is both

orthogonal to vertical relations and asset complementarity and also causes both co-

movement among industry growth rates and firms to increase their market shares

within these industries at the same time.

Though the above arguments help to limit the magnitude of endogeneity concerns,

as an additional analysis we study the effect of the United States granting Perma-

nent Normal Trade Relations (PNTR) to China. PNTR was granted by Congress in

October 2000 and became effective when China joined the World Trade Organization

(WTO) at the end of 2001. Before the conferral of PNTR, the tariff rates of US

imports from China required annual renewals, which had imposed a great amount
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of uncertainty on the trade relations between China and US. Although PNTR did

not change the import tariff rates that the United States actually applied to Chinese

goods, it removed the uncertainty associated with these annual renewals. Without the

yearly renewal of favorable rates, US import tariffs would have increased substantially.

Pierce and Schott (2016) show that granting PNTR to China caused declines in

employment within US industries that were most at risk of higher tariffs without

PNTR (exposed industries). We exploit the same shock to test whether employment

growth declined for industries that were not directly affected by PNTR, but were

connected to the exposed industries through the conglomerate network. Though this

setting does not provide an exogenous change to the network, it does identify a specific

exogenous shock that we can observe transmitting through the network.

Following Pierce and Schott (2016), we measure the NTR gap as the difference

between the non-NTR rates to which tariffs would have risen in the industry if annual

renewal had failed and the NTR tariff rates that were locked in by PNTR. This shock

is time-invariant for each industry and therefore absorbed by industry fixed effects.

However, as in Pierce and Schott, we can identify the effect of the NTR gap through

its interaction with a dummy variable, Post, which is equal to one from 2001 onward

to indicate years after the passage of PNTR.

To identify industries that could potentially receive the NTR shock from the ex-

posed industries through the conglomerate network, we use the transmission network,

F ′H . To help address reverse causation, we use the 1999 network to ensure it is ex-

ogenous to the NTR shock in 2000. Thus, the results are not driven by conglomerates

forming new industry linkages in response to the tariff shock.

For each industry k in the transmission network, we weight the NTR gap by the

entries in the kth column of F ′H . These entries represent the shocks from row

industries that transmit to industry k. Thus, our weighting scheme provides for

variation in an industry’s exposure to the NTR gap based on the magnitude of the

gap and the magnitude of the connection to the affected industry. We also nor-

malize the measure by the sum of the column, excluding industry i. Therefore,

Transmission NTR gapi =
∑

k 6=i Transmissionk,i×NTR gapk
∑

k 6=i Transmissionk,i
. As above, this variable is iden-

tified through the interaction with the post dummy variable. If the employment shock

transmits through the conglomerate network, we expect to find a negative coefficient

on the interaction between the strength of the conglomerate network and the NTR

gap. This reflects the change in employment for more exposed industries relative to

less exposed industries.
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We estimate the model using industry level employment data from the US Census

Bureau’s County Business Patterns (CBP) files from 1997 to 2018. These data offer

the most detailed view of the United States’ industrial structure available to the

public. They provide annual data on employment at a detailed industry level, which

covers nearly all establishments with paid employees in the private sector of the United

States. Therefore, unlike the Compustat Segment data, the industry employment

data in CBP files covers the universe of firms, both publicly listed and private. We

calculate the strength of network linkages using data for all industries, but estimate

regression coefficients using a sample of manufacturing industries, following Pierce

and Schott.

Table VI presents the results of these tests. Column 1 replicates the findings in

Pierce and Schott (2016). US industries directly exposed to the NTR shock experi-

ence a significant decline in employment. Column 2 shows that this shock transmits

through the conglomerate network. Industries with greater network connections to

the industries directly exposed to the NTR shock also experience declines in employ-

ment. These results provide further evidence that economic shocks transmit across

industries through conglomerate firms.

In columns 3 and 4 of Table VI, we provide two more robustness checks. In column

3 we create a placebo variable identical to the interaction between the transmission

network and the NTR gap by randomly assigning industries to the actual network

weights in the transmission network, as above. We find that there is no correlation

between this placebo network and employment growth. This implies that our main

results are not caused by a general network-wide trend. Finally, in column 4, we

include the strength of network connections from the 1997 input-output network. We

find that downstream industries are affected by the shock, though upstream industries

are not, consistent with Pierce and Schott (2016). However, we still find that the

transmission network is significantly related to employment in connected industries.

These tests are important because they allow us to exploit the cross-sectional vari-

ation in the exposure to an identifiable shock. We also use the predetermined con-

glomerate network prior to the NTR shock to rule out reverse causality and control

for input-output relations to control for alternative explanations. In addition, our

dependent variable is not based on public firm filings in Compustat. Even after these

controls, we still find that the conglomerate network serves as a conduit to spread

economic shocks.



42 THE CONGLOMERATE NETWORK

Table VI
Transmission of Tariff Shocks Through the Conglomerate Network

This table presents coefficient estimates from panel regressions where the dependent variable is the
industry growth rate of employment. NTR Gap is the difference between the non-Normal Trade
Relations tariff rate and the NTR tariff rate. Post × Transmission NTR Gapi is the transmission gap
weighted by the transmission matrix from the conglomerate network. IO Customer and IO Supplier
are inter-industry connections from the input-output network. Coefficients and industry-clustered
standard errors (in parentheses) are in percentages. Statistical significance is indicated by ∗∗∗, ∗∗, and
∗ for significance at 0.01, 0.05, and 0.10.

Dependent variable: Employment growth

(1) (2) (3) (4)

Post × NTR Gapi −7.420∗∗∗ −5.756∗∗∗ −7.428∗∗∗ −2.250
(1.457) (1.674) (1.453) (1.999)

Post × Transmission NTR Gapi −4.640∗∗ −4.091∗

(2.074) (2.166)

Post × Placebo NTR Gapi 0.460
(2.193)

Post × IO Customer NTR Gapi −7.683∗∗

(3.207)

Post × IO Supplier NTR Gapi −2.060
(4.976)

Industry and year fixed effects Yes Yes Yes Yes
Adjusted R2 0.176 0.176 0.175 0.178
Observations 5,375 5,375 5,375 5,358

VI. Robustness Tests

Though the above results show that inter-industry strength in the conglomerate

network is correlated with the strength of the comovement of industry growth rates,

there are potential concerns related to sampling bias, endogeneity, industry defini-

tions, and mechanisms.

First, to address the concern that the dependent and explanatory variables are both

derived from data restricted to publicly-traded firms, in Online Appendix Table I, we

estimate the main regressions using industry level employment data from the US CBP

data, as above. Consistent with the baseline results, a stronger CoHHI link between

industries is associated with strong comovement in their growth rates of employment.
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Second, to help address reverse causality concerns, we used lagged variables in

the tariff shock tests in Table VI. To provide additional robustness, in Online Ap-

pendix Table II, we also re-estimate our main equations using lagged explanatory

variables with industry-pair fixed effects. These tests control for any time-invariant

determinant of industry comovement (industry-pair fixed effects) as well as reverse

causation in the time-series, in which firms tend to diversify into industries that have

recently experienced greater comovement (lagged explanatory variables). The results

are qualitatively similar as the main results.

Third, to alleviate concerns that using large publicly traded firms to construct our

network creates truncation bias in our results, we run a series of robustness tests.

To test how changing the size threshold of the available Compustat data affects our

results, we estimate the main tests using a sample that excludes observations of firms

that are below the 25th percentile of sales in a given year. Online Appendix Table III

shows that our results are nearly identical as in the main tests that use the full

Compustat sample. In Online Appendix Table IV, we use a more extreme threshold

of the 50th percentile of sales. The magnitude of the results are smaller, but they

are still statistically significant. These tests suggest that our results are likely to

be stronger if we had a larger sample that included smaller, private firms. Likewise,

Online Appendix Table V shows that the results are nearly identical when we exclude

foreign firms.

Fourth, in untabulated results, we compare Compustat data to the Economic Cen-

sus data published by the US Census Bureau. For each industry, we calculate the

ratio of Compustat sales to Census sales. We then divide industries into those that

have above-median representation by Compustat firms and those with below-median

representation. We find that the total Census-level sales of the average industry

with above-median representation is statistically identical to the Census-level sales of

the average industry with below-median representation. This means that large and

small industries, as measured by Census data, are equally represented by Compustat

data. This helps alleviate any concerns that Compustat data is biased towards large

industries because it is biased towards large firms.

Fifth, we reconstruct our network measures using SIC 3-digit industry definitions,

which are considerably more coarse than the NAICS codes we use in our main tests:

the number of industry-pairs in the network based on 3-digit SIC codes is only about

25% of the number of industry-pairs in the main specifications. Online Appendix
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Table VI shows that our main results are robust to constructing the network using

these more coarse industry definitions.

Sixth, we use the tariff shock to provide direct evidence of the transmission of

shocks from one segment to another within the same conglomerate firm. We create

a variable that measures a firm-segment’s exposure to the tariff shock from other

segments within the same conglomerate, similar to our industry-level measure in

Table VI. We find that a segment’s sales growth is lower when other segments within

the same firm have greater exposure to the tariff shock, consistent with prior literature

on internal reallocation. The results and further details are in the Online Appendix.

Finally, we provide suggestive evidence that financial constraints influence the

transmission of shocks within conglomerates. We define the financial constraints

of an industry pair as the sales weighted average of the financial constraints index of

Whited and Wu (2006) for the conglomerates that operate in both industries. If an

industry pair is unconnected, we set its financial constraint to zero. In Online Appen-

dix Table VIII, the interaction of CoHHI and the financial constraints variable shows

that industry pairs with more financially constrained firms tend to comove less with

each other. Consistent with Appendix B.1 of Matvos and Seru (2014), these results

could imply that financially constrained firms allocate internal resources efficiently,

causing less spillovers and thus, less comovement between industries. In contrast, un-

constrained firms might engage in corporate socialism, causing more comovement of

industry pairs. We caution that these results are speculative and a full investigation

of the causes of internal redistribution is beyond the scope of this paper.

VII. Conclusion

To organize an analysis of the economy, researchers typically partition economic

activity into a set of isolated industries, grouped together by common suppliers,

production processes, technology, or customers. At the same time, economic activity

is grouped together by common control derived from ownership, typically organized

as firms. These two groupings create overlapping boundaries of economic activity,

in which industries are groupings of firms, but at the same time, some firms are

groupings of industries. In this paper, we organize these overlapping groupings into

a unified network of industries and firms. Using this network perspective, we show

that economic activity transmits across the economy through conglomerate firms that

span multiple industries.
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The core of our model is an affiliation network in which industries are affiliated with

firms and firms are affiliated with industries, but firms have no direct connections with

other firms and industries have no direct connections with other industries. This cre-

ates a directed, weighted network in which shocks transmit from firms to industries

in proportion to a firm’s market share of total industry sales and from industries to

firms in proportion to the fraction of a firm’s sales attributed to the industry. From

the affiliation network, we create three unique inter-industry networks that vary in

their interpretation. In the first network, inter-industry connections represent the

strength of the links from an industry through conglomerate firms, back to other

industries. The connections in the second network represent two industries’ com-

monality of shared in-links from overlapping conglomerate firms. The final network

represents the strength of shared out-links from industries to common firms.

An important new perspective offered by our network is a microfoundation for the

widely-used Herfindahl-Hirschman Index (HHI). We show that HHI is a special case of

a more general measure we call CoHHI which represents the shared in-links of an in-

dustry. If the same firms command more similar market shares in two industries, then

the industries have a higher CoHHI. This reflects a measure of cross-industry sales

concentration through overlapping firms. Furthermore, just as statistical variance is

a special case of covariance, HHI is a special case of CoHHI. This derivation also

provides an economic rationale for HHI’s specific formulation as the sum of squared

market shares, which is an ad hoc choice made in the original papers by Hirschman

and Herfindahl.

The conglomerate network also provides predictions on the covariance of growth

rates across industries. Assuming idiosyncratic firm and industry shocks, we show

that the volatility of an industry’s growth equals a common volatility of industry

growth rates plus firm-level volatility weighted by the HHI of the industry. The

covariance of industry growth rates is equal to firm-level volatility weighted by the

CoHHI between the two industries. Thus CoHHI describes the comovement of growth

rates across the economy.

We test the predictions of our model using a panel of segment level data from 1997

to 2018. We show that the stronger is the connection between two industries in the

conglomerate network, the stronger is the comovement of their growth rates of sales,

asset levels, and employment. These results persist after controlling for industry-pair

fixed effects, year fixed effects, changes in industry HHIs, customer-supplier links,

and asset similarity measures. To help identify a causal relationship, we use lagged
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values of network connections and find qualitatively similar results. We also exploit

the cross-sectional variation in industries’ exposure to tariff rate shocks following the

granting of normal trade relations to China. We find that employment falls more in

industries that have stronger connections to the industries directly affected by the

tariff rate shock.

We believe our results have far-reaching implications. First, they help explain how

idiosyncratic shocks aggregate to macroeconomic fluctuations. Second, they provide

a new perspective on the incidence of diversified conglomerates across industries and

time. Third, the conglomerate network generates a new measure of cross-industry

concentration, CoHHI, and gives an economic microfoundation to HHI. Given the

prevalence of HHI in academic research and among policy-makers, we believe this

measure will be useful for understanding the organizational structure of economic

activity within and across industries.
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Online Appendix

“The Conglomerate Network”

Kenneth R. Ahern, Lei Kong, and Xinyan Yan

I. Network Visualizations

To help visualize the conglomerate network, Online Appendix Figure I presents the

CoHHI network for manufacturing industries in 2015. Each inter-industry connection

represents a CoHHI score above a minimum threshold. Industries listed in boxes are

aggregated to more coarse definitions for brevity. To give further intuition for the

structure of the network, Online Appendix Figure II provides a detailed representation

of the links between the paper, chemicals, and plastic industries. The firms listed

are those firms that operate in at least two of the three industries. The CoHHI of

the paper and chemicals industries is driven by their common exposure to the same

firms, with Procter & Gamble as a key conduit. Likewise, the chemicals and plastics

industries are connected through common exposure to conglomerate firms, with Bayer

as the strongest connection.

II. Direct Evidence of the Transmission of Shocks within a

Conglomerate

To examine how shocks propagate from one segment to another in a conglomerate,

for each segment with the conglomerate, we create a companion NTR gap in addition

to its own NTR gap. Specifically, the companion NTR gap using 1999 conglomerate

structure is defined as Other NTR Gapi,j,k =
∑

l 6=k

(

Salesj,l,1999
∑

l 6=k Salesj,l,1999
×NTRGAPl

)

,

where i represents the segment, j represents the parental firm of the segment, k

represents the industry of segment i, t represents year, Salesj,l,1999 is firm j’s sales in

industry l in 1999, and NTR GAPl represents the NTR gap of industry l. To ensure

that what matters is that segments are linked to other industries in which the parent

firm is operating and not other industries in general, we create a placebo conglomerate

structure in 1999. Specifically, for each segment, we replace all industries to which the

segment is currently linked with randomly assigned industries. In other words, while
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holding a segment’s own NTR gap unchanged, we replace NTR GAPl with randomly

assigned industries when calculating the companion NTR gap of this segment.

In Online Appendix Table VII, we show the results using the 1999 conglomerate

structure in the first two columns and the placebo results in the last two columns.

The companion NTR gap has a negative and significant impact on segment sales

growth whereas the placebo tests reveal tiny and insignificant impacts.
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Beverages

Textile Mills

Textile Products

Apparel

Wood Products
Paper Mfg.

Printing

Petroleum
Products

Chemicals

Plastics

Nonmetallic Mineral

Primary Metal

Fabricated Metal

Machinery

Computers

Electrical Equip.

Transport Equip.

Furniture

Misc.

Agriculture

Oil/Gas/P ipelines

Construction

Mining/Civil Engineering

Transportation

Utilities/Wholesale

Publishing/Movies/Information

Online Appendix Figure I
Conglomerate Network in Manufacturing in 2015

Each node in the network is a three-digit manufacturing industry, except non-manufacturing industries, which are aggre-
gated at a higher level and presented in boxes. Lines between industries represent Co-HHI measures above a minimum
threshold. Because many of the manufacturing industries are connected to credit and securities industries in the Co-HHI
network, we omit these links for ease of viewing the other Co-HHI connections. Data are from Compustat.
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Firms Industries

Grief Inc.

Masco Corp.

Newell Brands

Procter & Gamble

Rogers Corp.

Sealed Air

Westrock

Schweitzer-Mauduit

Bayer

Omnova Solutions

Edgewell Personal Care

Berry Global Group

Paper, HHI: 7.3%

Chemicals, HHI: 2.0%

Plastics, HHI: 16.4%

Co-HHI: 0.43%

Co-HHI: 0.15%

Online Appendix Figure II
The Affiliation Network of the Paper, Chemicals, and Plastics Industries

This figure represents the affiliation network of three manufacturing industries, de-
fined at the three-digit NAICS level: Paper, Chemicals, and Plastics. The listed
firms are those that operate in at least two of the three industries. Each industry
contains additional firms not represented in the figure that do not operate segments
in at least two of these three industries. The widths of the lines are scaled by firms’
market shares in each industry. There is a weak Co-HHI relationship between Plas-
tics and Paper not shown in the figure. Data are from Compustat for year 2015.
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Online Appendix Table I

Comovement of Employment Growth and Network Links

This table presents coefficient estimates from panel regressions where the dependent variable is (gk − gj)
2, where gi

is the growth rate of industry i employment. Variable definitions are provided in the text. All regressions include
industry-pair fixed effects and year fixed effects. Coefficients and industry-pair standard errors (in parentheses) are
in percentages. Statistical significance is indicated by ∗∗∗, ∗∗, and ∗ for significance at 0.01, 0.05, and 0.10.

Dependent variable: (gk − gj)
2

(1) (2) (3) (4) (5) (6)

Shared in-links (Co-HHI) −0.542∗∗ −0.569∗∗

(0.231) (0.232)

Shared out-links 0.093 0.137
(0.114) (0.114)

Shared links dummy −0.047∗∗

(0.020)

Transmission −0.150
(0.145)

Transmission dummy −0.047∗∗∗

(0.014)

Sum of HHI 0.036∗∗∗ 0.036∗∗∗ 0.036∗∗∗ 0.035∗∗∗ 0.036∗∗∗ 0.035∗∗∗

(0.010) (0.010) (0.010) (0.010) (0.007) (0.007)

Input-Output link 0.279∗∗∗ 0.278∗∗∗ 0.279∗∗∗ 0.279∗∗∗ 0.287∗∗∗ 0.287∗∗∗

(0.036) (0.036) (0.036) (0.036) (0.025) (0.025)

Hoberg-Phillips similarity 0.583 0.589 0.581 0.589 0.580∗ 0.582∗

(0.478) (0.478) (0.478) (0.478) (0.338) (0.338)

Industry-pair and year fixed effects Yes Yes Yes Yes Yes Yes
Adjusted R2 0.169 0.169 0.169 0.169 0.169 0.169
Observations 3,264,827 3,264,827 3,264,827 3,264,827 6,529,654 6,529,654
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Online Appendix Table II

Comovement of Industry Growth and Lagged Shared Network Links

This table presents coefficient estimates from panel regressions where the dependent
variable is (gk − gj)

2, where gi is the growth rate of industry i for sales (Panel A) and
assets (Panel B). Explanatory variables are lagged by one year. Variable definitions are
provided in the text. All regressions include industry-pair fixed effects and year fixed
effects. Coefficients and industry-pair clustered standard errors (in parentheses) are in
percentages. Statistical significance is indicated by ∗∗∗, ∗∗, and ∗ for significance at 0.01,
0.05, and 0.10.

Dependent variable: (gk − gj)
2

(1) (2) (3) (4)

Panel A: Sales growth

Shared in-links (Co-HHI) −13.645∗∗∗ −13.254∗∗∗

(2.897) (2.911)

Shared out-links −2.607∗∗ −1.789
(1.107) (1.095)

Shared links dummy −0.620∗∗∗

(0.225)

Sum of HHI 0.136 0.132 0.135 0.129
(0.120) (0.120) (0.120) (0.120)

Input-Output link −0.006 −0.007 −0.005 −0.004
(0.342) (0.342) (0.342) (0.342)

Hoberg-Phillips similarity −13.092∗∗ −12.924∗∗ −13.044∗∗ −12.951∗∗

(5.489) (5.483) (5.487) (5.483)

Industry-pair and year fixed effects Yes Yes Yes Yes
Adjusted R2 0.066 0.066 0.066 0.066
Observations 3,278,544 3,278,544 3,278,544 3,278,544

continued on next page
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Dependent variable: (gk − gj)
2

(1) (2) (3) (4)

Panel B: Asset growth

Shared in-links (Co-HHI) −16.219∗∗∗ −15.881∗∗∗

(2.556) (2.561)

Shared out-links −2.528∗∗ −1.544
(1.169) (1.132)

Shared links dummy −0.661∗∗∗

(0.236)

Sum of HHI −1.230∗∗∗ −1.234∗∗∗ −1.231∗∗∗ −1.237∗∗∗

(0.119) (0.119) (0.119) (0.119)

Input-Output link 0.010 0.007 0.011 0.010
(0.358) (0.358) (0.358) (0.358)

Hoberg-Phillips similarity −7.429 −7.257 −7.389 −7.283
(5.486) (5.484) (5.485) (5.484)

Industry-pair and year fixed effects Yes Yes Yes Yes
Adjusted R2 0.056 0.056 0.056 0.056
Observations 3,202,103 3,202,103 3,202,103 3,202,103
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Online Appendix Table III

Comovement of Industry Growth and Shared Network Links

Robustness to Excluding Firms Below the 25th Percentile of Sales

This table replicates Table III of the main paper, but uses observations from networks
that exclude firms with sales below the 25th percentile of sales per year. The table
presents coefficient estimates from panel regressions where the dependent variable is
(gk − gj)

2, where gi is the growth rate of industry i for sales (Panel A) and assets (Panel
B). Variable definitions are provided in the text. All regressions include industry-pair
fixed effects and year fixed effects. Coefficients and industry-pair clustered standard
errors (in parentheses) are in percentages. Statistical significance is indicated by ∗∗∗, ∗∗,
and ∗ for significance at 0.01, 0.05, and 0.10.

Dependent variable: (gk − gj)
2

(1) (2) (3) (4)

Panel A: Sales growth

Shared in-links (Co-HHI) −18.747∗∗∗ −17.932∗∗∗

(2.615) (2.629)

Shared out-links −5.021∗∗∗ −3.727∗∗∗

(1.310) (1.244)

Shared links dummy −1.295∗∗∗

(0.221)

Sum of HHI 2.511∗∗∗ 2.505∗∗∗ 2.508∗∗∗ 2.498∗∗∗

(0.111) (0.111) (0.111) (0.111)

Input-Output link 0.465 0.462 0.466 0.470
(0.322) (0.322) (0.322) (0.322)

Hoberg-Phillips similarity −16.455∗∗∗ −16.170∗∗∗ −16.376∗∗∗ −16.216∗∗∗

(4.279) (4.271) (4.277) (4.273)

Industry-pair and year fixed effects Yes Yes Yes Yes
Adjusted R2 0.061 0.061 0.061 0.061
Observations 3,252,468 3,252,468 3,252,468 3,252,468

continued on next page
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Dependent variable: (gk − gj)
2

(1) (2) (3) (4)

Panel B: Asset growth

Shared in-links (Co-HHI) −18.059∗∗∗ −17.229∗∗∗

(2.609) (2.617)

Shared out-links −5.062∗∗∗ −3.812∗∗∗

(1.474) (1.410)

Shared links dummy −1.441∗∗∗

(0.233)

Sum of HHI 2.657∗∗∗ 2.651∗∗∗ 2.654∗∗∗ 2.643∗∗∗

(0.114) (0.114) (0.114) (0.114)

Input-Output link −0.150 −0.154 −0.149 −0.145
(0.326) (0.325) (0.326) (0.325)

Hoberg-Phillips similarity −20.197∗∗∗ −19.936∗∗∗ −20.124∗∗∗ −19.975∗∗∗

(5.538) (5.527) (5.534) (5.527)

Industry-pair and year fixed effects Yes Yes Yes Yes
Adjusted R2 0.052 0.052 0.052 0.052
Observations 3,161,000 3,161,000 3,161,000 3,161,000
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Online Appendix Table IV

Comovement of Industry Growth and Shared Network Links

Robustness to Excluding Firms Below the Median Size

This table replicates Table III of the main paper, but uses observations from networks
that exclude firms with sales below the median sales level per year. The table presents
coefficient estimates from panel regressions where the dependent variable is (gk − gj)

2,
where gi is the growth rate of industry i for sales (Panel A) and assets (Panel B).
Variable definitions are provided in the text. All regressions include industry-pair fixed
effects and year fixed effects. Coefficients and industry-pair clustered standard errors (in
parentheses) are in percentages. Statistical significance is indicated by ∗∗∗, ∗∗, and ∗ for
significance at 0.01, 0.05, and 0.10.

Dependent variable: (gk − gj)
2

(1) (2) (3) (4)

Panel A: Sales growth

Shared in-links (Co-HHI) −9.299∗∗∗ −8.279∗∗∗

(2.825) (2.847)

Shared out-links −6.341∗∗∗ −5.525∗∗∗

(1.643) (1.592)

Shared links dummy −0.963∗∗∗

(0.241)

Sum of HHI 2.429∗∗∗ 2.421∗∗∗ 2.424∗∗∗ 2.417∗∗∗

(0.119) (0.119) (0.119) (0.119)

Input-Output link 1.321∗∗∗ 1.327∗∗∗ 1.328∗∗∗ 1.332∗∗∗

(0.365) (0.365) (0.365) (0.365)

Hoberg-Phillips similarity 0.618 0.851 0.723 0.785
(4.989) (4.983) (4.986) (4.987)

Industry-pair and year fixed effects Yes Yes Yes Yes
Adjusted R2 0.063 0.063 0.063 0.063
Observations 2,593,920 2,593,920 2,593,920 2,593,920

continued on next page
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Dependent variable: (gk − gj)
2

(1) (2) (3) (4)

Panel B: Asset growth

Shared in-links (Co-HHI) −10.991∗∗∗ −9.946∗∗∗

(2.671) (2.686)

Shared out-links −6.566∗∗∗ −5.591∗∗∗

(1.684) (1.624)

Shared links dummy −1.180∗∗∗

(0.258)

Sum of HHI 3.702∗∗∗ 3.693∗∗∗ 3.697∗∗∗ 3.688∗∗∗

(0.119) (0.119) (0.119) (0.119)

Input-Output link 0.544 0.549 0.550 0.557
(0.370) (0.370) (0.370) (0.370)

Hoberg-Phillips similarity −15.681∗∗∗ −15.428∗∗∗ −15.581∗∗∗ −15.498∗∗∗

(5.282) (5.275) (5.279) (5.276)

Industry-pair and year fixed effects Yes Yes Yes Yes
Adjusted R2 0.049 0.049 0.049 0.049
Observations 2,509,535 2,509,535 2,509,535 2,509,535
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Online Appendix Table V

Comovement of Industry Growth and Shared Network Links

Robustness to Excluding Foreign Firms

This table replicates Table III of the main paper, but uses observations from networks
that exclude firms incorporated outside of the U.S. The table presents coefficient estimates
from panel regressions where the dependent variable is (gk − gj)

2, where gi is the growth
rate of industry i for sales (Panel A) and assets (Panel B). Variable definitions are
provided in the text. All regressions include industry-pair fixed effects and year fixed
effects. Coefficients and industry-pair clustered standard errors (in parentheses) are in
percentages. Statistical significance is indicated by ∗∗∗, ∗∗, and ∗ for significance at 0.01,
0.05, and 0.10.

Dependent variable: (gk − gj)
2

(1) (2) (3) (4)

Panel A: Sales growth

Shared in-links (Co-HHI) −21.811∗∗∗ −20.918∗∗∗

(2.448) (2.471)

Shared out-links −6.244∗∗∗ −4.365∗∗∗

(1.362) (1.284)

Shared links dummy −2.050∗∗∗

(0.236)

Sum of HHI 1.800∗∗∗ 1.793∗∗∗ 1.797∗∗∗ 1.784∗∗∗

(0.113) (0.113) (0.113) (0.113)

Input-Output link 0.490 0.488 0.494 0.498
(0.329) (0.330) (0.330) (0.330)

Hoberg-Phillips similarity −16.236∗∗∗ −15.930∗∗∗ −16.157∗∗∗ −15.973∗∗∗

(4.323) (4.310) (4.320) (4.311)

Industry-pair and year fixed effects Yes Yes Yes Yes
Adjusted R2 0.070 0.070 0.070 0.070
Observations 3,371,361 3,371,361 3,371,361 3,371,361

continued on next page



THE CONGLOMERATE NETWORK 13

Dependent variable: (gk − gj)
2

(1) (2) (3) (4)

Panel B: Asset growth

Shared in-links (Co-HHI) −22.676∗∗∗ −22.294∗∗∗

(2.223) (2.235)

Shared out-links −3.901∗∗ −1.875
(1.579) (1.479)

Shared links dummy −2.084∗∗∗

(0.237)

Sum of HHI 1.588∗∗∗ 1.583∗∗∗ 1.586∗∗∗ 1.571∗∗∗

(0.112) (0.112) (0.112) (0.112)

Input-Output link −0.817∗∗ −0.820∗∗ −0.815∗∗ −0.808∗∗

(0.340) (0.340) (0.340) (0.340)

Hoberg-Phillips similarity −17.680∗∗∗ −17.447∗∗∗ −17.644∗∗∗ −17.428∗∗∗

(5.050) (5.036) (5.048) (5.036)

Industry-pair and year fixed effects Yes Yes Yes Yes
Adjusted R2 0.058 0.058 0.058 0.058
Observations 3,289,294 3,289,294 3,289,294 3,289,294
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Online Appendix Table VI

Comovement of Industry Growth and Shared Network Links

Robustness to Coarse Industry Definitions

This table replicates Table III of the main paper, but uses observations from networks
based on 3-Digit SIC codes. The table presents coefficient estimates from panel regressions
where the dependent variable is (gk − gj)

2, where gi is the growth rate of industry i for
sales (Panel A) and assets (Panel B). Variable definitions are provided in the text. All
regressions include industry-pair fixed effects and year fixed effects. Coefficients and
industry-pair clustered standard errors (in parentheses) are in percentages. Statistical
significance is indicated by ∗∗∗, ∗∗, and ∗ for significance at 0.01, 0.05, and 0.10.

Dependent variable: (gk − gj)
2

(1) (2) (3) (4)

Panel A: Sales growth

Shared in-links (Co-HHI) −18.393∗∗∗ −16.487∗∗∗

(5.047) (4.984)

Shared out-links −4.906∗∗∗ −4.582∗∗∗

(0.919) (0.909)

Shared links dummy −1.041∗∗∗

(0.207)

Sum of HHI 2.570∗∗∗ 2.562∗∗∗ 2.568∗∗∗ 2.555∗∗∗

(0.231) (0.231) (0.231) (0.231)

Input-Output link −0.171∗∗∗ −0.170∗∗∗ −0.170∗∗∗ −0.169∗∗∗

(0.053) (0.053) (0.053) (0.053)

Hoberg-Phillips similarity −1.504 −1.309 −1.403 −1.270
(4.592) (4.596) (4.592) (4.574)

Industry-pair and year fixed effects Yes Yes Yes Yes
Adjusted R2 0.066 0.066 0.066 0.066
Observations 845,868 845,868 845,868 845,868

continued on next page
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Dependent variable: (gk − gj)
2

(1) (2) (3) (4)

Panel B: Asset growth

Shared in-links (Co-HHI) −13.935∗∗∗ −11.982∗∗

(4.709) (4.726)

Shared out-links −5.010∗∗∗ −4.774∗∗∗

(0.946) (0.941)

Shared links dummy −1.160∗∗∗

(0.223)

Sum of HHI 0.019 0.013 0.018 0.006
(0.237) (0.237) (0.237) (0.237)

Input-Output link −0.303∗∗∗ −0.302∗∗∗ −0.302∗∗∗ −0.301∗∗∗

(0.057) (0.056) (0.056) (0.056)

Hoberg-Phillips similarity −22.009∗∗∗ −21.804∗∗∗ −21.876∗∗∗ −21.797∗∗∗

(4.361) (4.354) (4.357) (4.375)

Industry-pair and year fixed effects Yes Yes Yes Yes
Adjusted R2 0.053 0.053 0.053 0.053
Observations 821,164 821,164 821,164 821,164
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Online Appendix Table VII

Transmission of Tariff Shocks Within Conglomerates

This table presents coefficient estimates from panel regressions where the dependent variable is the
industry growth rate of sales. NTR Gap is the difference between the non-Normal Trade Relations tariff
rate and the NTR tariff rate. Other NTR Gap is based on other segments within the conglomerate
firm. Firm-clustered standard errors are in parentheses. Statistical significance is indicated by ∗∗∗, ∗∗,
and ∗ for significance at 0.01, 0.05, and 0.10.

Dependent variable: Sales growth

1999 Fixed Network Placebo Network

(1) (2) (3) (4)

Post × NTR Gapi 0.002 0.002 −0.054 −0.050
(0.063) (0.063) (0.057) (0.057)

NTR Gapi −0.859 0.576∗

(0.883) (0.313)

Post × Other NTR Gapi −0.197∗∗ −0.194∗∗ 0.013 0.018
(0.079) (0.079) (0.062) (0.062)

Other NTR Gapi −1.857∗ −0.201
(1.122) (0.153)

Segment fixed effects Yes Yes
Segment-industry fixed effects Yes Yes
Year fixed effects Yes Yes Yes Yes
Adjusted R2 0.268 0.270 0.269 0.271
Observations 24,143 24,095 24,143 24,095
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Online Appendix Table VIII

Financial Constraints

This table presents coefficient estimates from panel regressions where the dependent variable
is (gk − gj)

2, where gi is the growth rate of industry i for sales in column 1 and assets in
columns 2. Industry-pair financial constraint is the Whited-Wu index of financial constraints
for an industry-pair-year observation. All regressions include industry-pair and year fixed
effects. Coefficients and industry-pair clustered standard errors (in parentheses) are in per-
centages. Statistical significance indicated by ∗∗∗, ∗∗, and ∗ for significance at 0.01, 0.05, and 0.10.

Sales growth Asset growth

Industry-pair financial constraint 0.979 0.831
(0.733) (0.879)

Shared in-links (CoHHI) −0.923 10.068
(10.278) (10.757)

CoHHI×Financial constraint 51.493∗∗ 77.677∗∗∗

(24.514) (24.269)

Sum of HHI 2.511∗∗∗ 1.690∗∗∗

(0.112) (0.116)

Input-Output link 1.038∗∗∗ 0.193
(0.362) (0.367)

Hoberg-Phillips similarity −20.760∗∗∗ −29.298∗∗∗

(4.365) (5.637)

Industry-pair and year fixed effects Yes Yes
Adjusted R2 0.068 0.054
Observations 3,560,590 3,471,255


