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Abstract 

This paper presents a novel take on the effect of uncertainty on investor learning about managerial 

skills by examining the fund flow-performance relationship in ESG rated funds in the context of 

climate uncertainty. Utilizing a large sample of mutual funds domiciled in Australia and New 

Zealand and recently developed transition and physical climate risk indexes for the Australia-

Oceania region, we show that investor learning regarding manager skills is affected by not only 

the nature of climate uncertainty faced by decision makers, but also the sustainability ratings of 

the funds under consideration. While the response of fund flows to past performance is found to 

be stronger for funds with higher sustainability scores, we show that high climate risk dampens 

investors’ ability to process information when it comes to funds with lower sustainability scores, 

thus hindering their ability to differentiate fund manager skill from luck. Our findings suggest that 

investor learning could be enhanced by the ESG performance of funds even under high uncertainty. 

We underscore the informational value captured by ESG ratings from a novel angle, particularly 

during periods of higher climate uncertainty. Our findings have implications for the managed fund 

industry and the information asymmetries that may arise between fund managers and investors. 
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1. Introduction  

The literature on climate finance has picked up steam in recent years with a rapidly 

increasing number of works showing that climate risk is an important factor in corporate 

investment (Rodriguez Lopez et al., 2017; Engle et al., 2020) and asset allocation 

decisions (Krueger et al., 2020, Ceccarelli et al., 2023). Some papers in this growing strand of the 

literature approach climate risk from the perspective of time-varying disaster risks along the lines 

of Gourio (2012) and Wachter (2013), among others, and highlight the challenges posed by climate 

risks on economic growth prospects (e.g. Stern, 2007) and firm profitability (e.g. Pankratz et al., 

2019; Addoum et al., 2020). While this line of research emphasizes climate risk which materializes 

in a physical form such as floods/heat waves or climate chronic hazards, a separate strand of this 

literature focuses on the transitionary aspects of climate change on the economy and business 

profitability that are typically prompted by changes in climate-related policies, technological 

advances and shift in public preferences towards climate friendly investments (Bua et al., 2021, 

Cepni et al., 2023). Regardless of the channel in which climate risk impacts economic dynamics, 

a growing number of papers characterize climate risk as a long-run risk factor in financial markets 

(e.g. Bansal et al., 2017) and document robust evidence that climate risk exposure serves as a 

systematic driver of returns in equity (e.g. Faccini et al., 2021, Bolton and Kacperczyk, 2021, Bua 

et al., 2021 and Hsu et al., 2022), bond (e.g. Painter, 2020 and Huynh and Xia, 2021) and real 

estate markets (e.g. Baldauf et al., 2020, Murfin and Spiegel, 2020 and Bernstein et al., 2019).  

This paper presents a novel view on the nexus between climate uncertainty and financial 

market dynamics by investigating how climate risk affects investor learning regarding managerial 

skills. Specifically, utilizing a large sample of mutual funds domiciled in Australia and New 

Zealand and recently developed transition and physical climate risk indexes for the Australia-

Oceania region, we examine the effect of climate uncertainty on the fund flow-performance 

relationship in environmental, social and governance (ESG) rated funds based on Morningstar 

ratings. Our study has two significant contributions. First, we develop two novel indexes of climate 

risk for the Australia-Oceania region via textual analysis of an extensive list of news articles from 

The Australian and The New Zealand Herald newspapers associated with the region over the 

period January 2018 through December 2022. Our procedure is able to capture the distinction 

between physical and transition risks associated with climate change prompted by physical climate 
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events or the regulatory or operational impact of climate risks. To the best of our knowledge, ours 

is the first in the literature to propose measures of physical and transitional climate risk for the 

Australia-Oceania region. The second contribution of our study is to extend the burgeoning 

literature on climate finance to a unique direction by examining how climate uncertainty affects 

investor learning regarding managerial skills in the managed fund industry. To this end, we 

examine the relationship between fund flows and past performance via alternative methodologies 

that incorporate climate risk as a determinant of fund flow performance sensitivities. To enlarge 

our understanding further, we examine whether the ESG performance of a fund plays a role in how 

uncertainty impacts investor learning. To the best of our knowledge, this is the first such study that 

examines investor learning in the climate context via the fund flow performance relationship 

analysis.  

Our main hypothesis is motivated by the well-established evidence in the literature that 

investment flows in the managed fund industry often serve as an indicator of investor sentiment 

(e.g., Frazzini and Lamont, 2008; Ben-Rephael et al., 2012) and investors use signals from past 

performance of funds to infer managerial skills (Huang et al., 2007). Such a learning effect paves 

the way to a predictive relationship between fund flows and past performance that is well 

documented in the literature (e.g., Berk and Green, 2004; Franzoni and Schmalz, 2017; Huang et 

al., 2022). Berk and Green (2004) provide the theoretical underpinnings of the learning effect and 

argue that the empirical flow-performance relationship reflects Bayesian (rational) investor 

learning about the skill of mutual fund managers such that past performance provides signals to 

investors, which in turn creates an informational channel. Later, Huang et al. (2022) further 

confirm that the flow-performance relationship is consistent with the Bayesian learning process 

and show that the flow-performance sensitivity of managed funds is weaker for funds with higher 

return volatility, arguing that volatile past performance provides noisy signals regarding 

managerial ability, thus hindering the learning process. None of these works, however, has 

examined investor learning in the context of ESG rated funds although the information reflected 

by the ESG rating of a fund can be argued to alleviate some of the informational asymmetries that 

may arise between the fund managers and investors, contributing to the learning process. This is 

indeed an interesting opening that we explore in our analysis as it adds another dimension to the 

informational value captured by ESG ratings. 
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In another strand of literature that deals with investor learning in the context of managed 

funds, evidence suggests that uncertainty faced by investors plays a significant role in the fund 

flow-performance relationship, arguing that higher uncertainty hinders investor learning about 

managerial skills (e.g. Jiang et al., 2021, Ali et al., 2023), thus leading to an inefficient capital 

allocation by investors.2 The role of uncertainty is further emphasized by Franzoni and Schmalz 

(2017) who show that uncertainty regarding the risk loadings on benchmark factors affects 

investors’ capital allocation decisions, thus reducing the flow-performance sensitivity in extreme 

markets states. Although the previous empirical works on the US mutual fund industry show that 

investors reward funds in an asymmetric fashion based on their past performance, i.e., they invest 

in good performers more aggressively than they sell bad performers, (e.g., Sirri and Tufano, 1998; 

Del Guercio and Tkac, 2002, among others), none of these works has explored the issue in the 

context of climate uncertainty that has been shown in recent studies to be a significant concern 

when making investment decisions ( Krueger et al., 2020, Ceccarelli et al., 2023).  

As mentioned earlier, one of the novelties of our work is that we examine the effect of 

climate uncertainty on investor learning in the context of ESG performance of managed funds. The 

literature on the fund flow-performance relationship in the context of sustainable funds is relatively 

less developed and mostly focuses on the comparison of sustainable funds against their 

conventional counterparts. For example, Bollen (2007) shows that flows to socially responsible 

investment (SRI) funds are positively (negatively) related to positive (negative) past performance. 

Similarly, Renneboog et al. (2011) show that SRI funds are generally less concerned about 

negative returns relative to non-SRI funds (or conventional funds) based on the flow-performance 

sensitivity for such funds. The authors further argue that SRI funds care less (more) about the 

financial (non-financial) attributes of the investment. Against this backdrop, we build on the above 

literature in three respects. First, we construct two news-based climate uncertainty indexes for the 

Australia-Oceania region that capture the physical and transitional aspects of climate change. 

Second, we examine the fund-flow performance relationship for a large sample of mutual funds 

categorized based on their ESG ratings. This allows us to make inferences on the role of ESG 

ratings on investor learning regarding manager skills. Finally, we study the effect of our newly 

 
2 These recent works, thus, add a new perspective to the relationship between stock market dynamics and uncertainty 

that is shown to drive return and volatility dynamics in financial markets (see Pastor and Veronesi, 2013; Kelly et al., 

2016; You et al., 2017; Liu and Zhang, 2015; Ali et al., 2022b; among others). 



5 

 

developed climate risk indices (transition and physical) on the fund flow-performance relationship 

for funds with high and low ESG ratings, enlarging our understanding of the nexus between climate 

uncertainty, ESG performance and investor learning.     

We find that investor learning regarding manager skills is affected by not only the nature 

of climate uncertainty faced by decision makers, but also the sustainability ratings of the funds 

under consideration. The response of fund flows to past performance is found to be particularly 

stronger for low ESG risk funds, i.e., funds with higher sustainability scores, suggesting that 

rational investors use past returns as a signal to form their posterior expectations about the ability 

of a fund manager, more so when a fund enjoys high ESG ratings. In contrast, we find that high 

transition climate risk dampens the flow-performance relationship, particularly in the case of funds 

with poor sustainability ratings, implying that investor learning about managerial skills in funds 

with high ESG risk is significantly hindered by the type of climate uncertainty that is associated 

with the operational or regulatory changes faced by certain institutions or sectors of the economy. 

We argue that favourable ESG performance for a fund helps to mitigate information asymmetries 

between the investors and fund managers, which in turn enhances investor learning regarding fund 

manager ability based on signals from past performance.  

Our findings highlight the informational value captured by ESG ratings on investor 

learning, particularly when faced with higher climate uncertainty that affects the economy both 

from the physical and transitionary perspectives. Although the evidence in the literature generally 

suggests that high uncertainty dampens investors’ ability to process information regarding 

managerial skills, our findings show that the learning process in fact could be enhanced by the 

ESG performance of funds, even under high uncertainty. While climate uncertainty serves as a 

significant determinant of fund flows as a standalone factor, particularly for funds that enjoy 

favourable sustainability ratings, our findings show that high climate risk dampens investors’ 

ability to process information when it comes to funds with poor ESG performance, thus hindering 

their ability to differentiate fund manager ability from luck. These findings have significant 

implications for the managed fund industry and the information asymmetries that may arise 

between fund managers and investors. 

The remainder of the paper is organized as follows. Section 2 describes the data and the 

methodology for constructing climate risk indexes. Section 3 presents the empirical results on the 
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fund flow-performance relationship in ESG rated funds and the role of climate uncertainty. Section 

4 discusses the findings from various robustness checks to ensure the robustness of our inferences 

to alternative model specifications. Finally, Section 5 provides our concluding remarks with 

suggestions for future research. 

2. Data and Methodology 

2.1. Data 

We employ the survivorship bias-free mutual fund dataset that includes all available open-

end equity funds from Morningstar Direct for the universe of funds domiciled in Australia and 

New Zealand (ANZ). Since Morningstar provides the fund-level sustainability (ESG) ratings data 

from January 2018, our sample period covers January 2018 through December 2022. Globally, 

Morningstar launched the Sustainability Ratings over 40,000 mutual funds into a simple rating 

scale between one and five globes as depicted in Figure A1 in the Appendix. The rating system 

was designed to provide “a reliable, objective way” to evaluate how investments are meeting 

environmental, social, and governance challenges wherein funds are classified based on the 

underlying holdings.3 In this setting, each holding is assigned a sustainability score based on the 

research of public documents undertaken by Sustainalytics, an independent Morningstar company 

that provides ESG ratings and analytics for listed companies. The ratings are based on how a firm 

scores on ESG issues and at the end of each month, Morningstar takes the weighted average of 

this measure based on the fund’s holdings to form a fund-specific sustainability score. Each fund 

in a Morningstar category is then ranked based on its sustainability score and this ranking serves 

as the basis of the Morningstar globe ranking depicted in Figure A1. It must, however, be noted 

that Morningstar provides ESG ratings for only a subset of the funds from the overall universe of 

funds because their rating system requires that a large portion of the fund's ESG risk is not left 

unrated by the corporate or sovereign risk rating frameworks. However, not all funds meet this 

criterion, therefore within the Morningstar database, a considerable number of funds remain 

unrated. Since our focus is specifically on the role of ESG ratings on investor learning in the 

 
3 For details, see http://news.morningstar.com/articlenet/article.aspx?id=745467. 

http://news.morningstar.com/articlenet/article.aspx?id=745467
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context of climate uncertainty, in our analysis, we use only the funds that meet the Morningstar’s 

ESG rating requirement.4    

After excluding funds with missing ESG ratings and other information such as returns and 

total net assets (TNA), our final sample yields an average of 2,724 funds per month across the two 

countries, among them on average 2,050 are alive (surviving) and 674 are defunct or dead 

(liquidated/merged), resulting in a total of 59,743 fund-month observations for our analyses. 

Figure 1 presents the distribution of the mutual funds in the sample across the five sustainability 

ratings over the period 2018-2022. The sustainability globe ratings represent funds in high risk (1), 

above average risk (2), average risk (3), below average risk (4) and low risk (5). Thus, Morningstar 

assigns a fund with high (low) ESG risk relative to its Morningstar Global Category as 1 (5) globe. 

In order to enrich our inferences, we further distinguish between the domestic funds (funds that 

invest primarily in stocks of the country of domicile) and international funds (funds that invest 

primarily in stocks of countries different from the country of domicile). To classify the funds based 

on their international or domestic focus, we use the fund investment category from Morningstar 

which results in 1,004 (1,720) funds classified as domestic (international), on average. Overall, 

our final dataset includes a large sample of mutual funds covering two significant markets in the 

Australia-Oceania region with a total net asset value of $533 billion, representing a sizeable chunk 

of the mutual fund population and unique set of panel data (when aggregated at the country level) 

for each month. 

Table 2 presents descriptive statistics for the sample of funds used in the multivariate tests. 

Panel A presents the monthly average each year and Panel B  reports the monthly fund statistics 

across the ESG ratings. We observe in Panel A that the average annual fund flow is consistently 

negative during the sample period. In Panel B, while the funds in each ESG category experience 

net outflows, we observe that funds in the high ESG risk category significantly outperform those 

in the low-risk category, by a 0.34% per month margin, possibly reflecting the compensation 

investors place on high ESG risk funds. On the other hand, we find no significant difference in 

fund flows between the high and low risk funds. Table 3 provides further details regarding fund 

characteristics for the whole sample (Panel A) and low and high ESG risk samples (Panels B and 

 
4 Complete details of the methodology can be found at : 

https://www.morningstar.com/content/dam/marketing/shared/research/methodology/744156_Morningstar_Sustainab

ility_Rating_for_Funds_Methodology.pdf     

https://www.morningstar.com/content/dam/marketing/shared/research/methodology/744156_Morningstar_Sustainability_Rating_for_Funds_Methodology.pdf
https://www.morningstar.com/content/dam/marketing/shared/research/methodology/744156_Morningstar_Sustainability_Rating_for_Funds_Methodology.pdf
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C, respectively). On average, we observe net outflows in all panels, suggesting that ANZ funds 

had investor outflows during the sample period. While high ESG risk funds outperform low ESG 

risk funds based on raw returns, the opposite holds when we adjust fund returns for risk based on 

the four-factor model of Carhart (1997). This could be as more sustainable a fund is, less prone 

the fund becomes to market wide risks in the long run. This is further supported by the lower return 

volatility experienced by low ESG risk funds (5.927%) compared to those with high ESG risk 

(6.391%), along with lower idiosyncratic volatility. Further categorizing the funds based on their 

domestic and international focus, i.e., whether they primarily invest in domestic or foreign 

securities, we observe in Table A1 in the Appendix that international funds on average experience 

outflows to a lesser extent, while these funds outperform their domestic counterparts on a risk-

adjusted basis. At the same time, domestic funds are more volatile and smaller in size. Finally, the 

pairwise correlations presented in Panel F in Table A1 indicate a positive correlation between risk 

adjusted returns and fund flows, while flows are negatively correlated with fund age, volatility and 

idiosyncratic volatility.  

2.2. Measuring climate risk  

To examine the role of climate uncertainty in the fund flow-performance relationship 

across the ESG rated funds in our sample, we construct novel measures of physical and transition 

climate risk for the Australia-Oceania region. Following the approach adopted in Bua et al. (2021), 

we perform a detailed textual analysis of an extensive list of news articles from The Australian 

and The New Zealand Herald associated with the region for the 2018–2022 period as these 

newspapers are a popular source of news for the finance industry to update investment decisions.5 

To this end, we adopt the physical and transition climate risk weighted vocabularies of Bua et al. 

(2021) which are constructed based on a list of authoritative and scientific texts on climate change 

published by governmental authorities and other institutions. Specifically, Bua et al. (2021) 

construct two distinct climate risk vocabularies with each term associated with a term-frequency 

inverse-document-frequency score as a measure of term-relevance. Next, we employ the cosine-

similarity approach, employed by Engle et al. (2020) and Bua et al. (2021), to compare the climate 

risk vocabularies with the corpus of daily news associated with the Australia-Oceania region and 

 
5 We retain English language news with maximum length of 5,000 words sourced from the Factiva database for The 

Australian (all sources) and The New Zealand Herald newspapers with a regional focus on Australia and Oceania. 

We then apply a one-day novelty filter to remove repetitive news and redundancy in the data. 

https://www.sciencedirect.com/science/article/pii/S1042443122002025#b20
https://www.sciencedirect.com/science/article/pii/S1042443122002025#b36
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generate physical and transition concern series representing the percentage of news coverage 

dedicated to each type of risk. Finally, we estimate an autoregressive model of order 1 (AR1) and 

use the residuals from the model to construct the Physical Risk Index (PRI) and the Transition 

Risk Index (TRI) that represent the two aspects of climate risk. To get the monthly TRI and PRI 

series, we consider the shocks to the averaged-monthly transition and physical concern time series 

respectively.  

Figures 2 and 3 present the time series plots for the climate risk series constructed over the 

2018–2022 period. Specifically, the figures show the daily physical and transition media concerns 

generated by the textual analysis of news articles and a selection of the most relevant PRI and TRI 

topics (Panel A), the corresponding monthly transition and physical concern time series (Panel B), 

and the monthly PRI and TRI (Panels C). Table A2 in the Appendix summarises the AR (1) 

estimates from the monthly concern time series models formulated as 

𝐶𝑜𝑛𝑐𝑒𝑟𝑛𝑡,𝑃𝑅 = 𝑐𝑃𝑅 + 𝜙𝑃𝑅𝐶𝑜𝑛𝑐𝑒𝑟𝑛𝑡−1,𝑃𝑅 + 𝑃𝑅𝐼𝑡,𝑃𝑅 
(1a) 

𝐶𝑜𝑛𝑐𝑒𝑟𝑛𝑡,𝑇𝑅 = 𝑐𝑇𝑅 + 𝜙𝑇𝑅𝐶𝑜𝑛𝑐𝑒𝑟𝑛𝑡−1,𝑇𝑅 + 𝑇𝑅𝐼𝑡,𝑇𝑅 
(1b) 

where Concern is the daily physical and transition media concerns representing the 

percentage of news coverage dedicated to each type of risk, c is the drift parameter, 𝜙 is the 

autoregressive coefficient and PRI and TRI are the residuals. Consistent with Bua et al. (2021), 

both physical risk and transition risk concerns have a positive drift suggesting a rise in the news 

coverage of these topics over time, with the transition risk coverage being higher and more 

persistent than that of physical risk (𝑐𝑇𝑅 > 𝑐𝑃𝑅 and 𝜙𝑇𝑅 > 𝜙𝑃𝑅). Further performing the 

commonality test of Dang et al. (2015), we find that 80.5% of the total information embedded in 

PRI and TRI is accounted for by individual information, implying that our procedure is able to 

capture the distinction between physical and transition risks associated with climate concerns. 

The visual inspection of Figures 2 and 3 provides several clues regarding some of the 

notable events that result in spikes in our climate risk index series. For example, examining the 

transition climate risk series in Figure 2, we observe the largest shock for TRI is recorded on 

08/12/2022, following the release of news concerning the use of renewable energies, like wind and 

solar, and green hydrogen to support the energy transition, as well as talks about the Australian 

emissions reduction goals along with the discussion on the application of environmental policies, 
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like the Australian Nature Repair Market Regulation. In contrast, the peak for the physical climate 

risk index in Figure 3 is observed on 20/05/2020, primarily as a result of the discussions on an 

extreme drought hitting Auckland, New Zealand, highlighting the risks on water scarcity. Other 

PRI peaks relate to the eruption of the underwater Hunga Tonga, cyclone Cody, and other weather 

events and consequences of physical hazards. These notable spikes are further identified in Tables 

A3 and A4 in the Appendix where we provide a summary of the top ten days with the highest 

physical and transition risk shocks over the period Jan 2018-Dec 2022. We observe that high 

climate shock days encompass a range of physical and transition risk topics. While the PRI series 

captures various acute physical risks such as floods, tsunamis, cyclones, extreme weather events 

and chronic risks like rising sea temperatures, droughts, and sea level rise, it is also able to detect 

news about climate adaptation calls and adverse impacts on ecosystems, such as a loss of 

biodiversity. It must be noted that this feature of our physical climate risk index distinguishes it 

from other physical risk databases that primarily associate physical risks with extreme weather 

events only.6 In contrast, we see that transition risk spikes with news on regulations and measures 

to reduce GHG emissions. This includes the development regarding Australia’s effort to meet the 

climate targets set by the Paris Agreement. Furthermore, news on the costs associated with the 

transition or advancements in technological innovation and renewable energies to achieve net-zero 

emissions balance also contribute to high TRI values. Overall, our climate risk series successfully 

capture various aspects of uncertainty that can be attributed to climate concerns, both from the 

physical and transitionary or regulatory perspectives. 

2.3. Fund flow-performance relationship 

To construct the monthly net fund flow series for each fund in the sample, we follow the 

methodology proposed by Chevalier and Ellison (1997), Sirri and Tufano (1998), Franzoni and 

Schmalz (2017), among others. Let 𝑇𝑁𝐴𝑖,𝑡 be the total net assets (in USD) of fund i at the end of 

month t. Fund flow for fund i in month t is then computed as  

𝐹𝐿𝑂𝑊𝑖,𝑡 =
𝑇𝑁𝐴𝑖,𝑡−𝑇𝑁𝐴𝑖,𝑡−1(1+𝑅𝑖,𝑡)

𝑇𝑁𝐴𝑖,𝑡−1
                                                 (2) 

 
6 Compared to the European PRI developed by Bua et al. (2021), our Australia-Oceania PRI captures additional types 

of physical hazards that are more typical of the Australia-Oceania region, such as tsunamis and cyclones. 
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where and 𝑅𝑖,𝑡 is the return of fund i in month t. Similarly, following the literature, we 

measure fund performance using the risk-adjusted returns, computed as the Carhart (1994) four-

factor alpha, by estimating 𝑅𝑖,𝑐,𝑡 − 𝛽𝑖
𝑚𝑘𝑡𝑀𝐾𝑇𝑚 + 𝛽𝑖

𝑠𝑚𝑏𝑆𝑀𝐵𝑚 + 𝛽𝑖
ℎ𝑚𝑙𝐻𝑀𝐿𝑚 + 𝛽𝑖

𝑚𝑜𝑚𝑀𝑂𝑀𝑚 

where 𝑅𝑖,𝑐,𝑡 is the fund’s raw return.7 The model is estimated using a 36-month rolling window 

regression for each fund and if fewer than 36 monthly return observations are available, we use a 

24-month window instead. To calculate the alphas, we adopt a region-based approach to risk 

adjustment similar to Bekaert et al. (2009) and Ferreira, Keswani, Miguel and Ramos (2012). 

Motivated by the argument in Hollenstein (2022) that regional factor models capture substantially 

larger average absolute alphas than local factor models, implying that regional risk factors can 

appropriately capture the alphas as opposed to country-specific risk factors, we estimate the fund 

alphas using the risk factors for the Australia-Oceania region, obtained from Ken French’s data 

library based on Fama and French (2012).8  

The benchmark model to test the fund flow-performance relationship is formulated as  

𝐹𝐿𝑂𝑊𝑖,𝑡 = 𝑏1𝑃𝐸𝑅𝐹𝑖,𝑡−1 + 𝑏2𝑃𝐸𝑅𝐹_𝑆𝑞𝑢𝑎𝑟𝑒𝑑𝑖,𝑡−1 + 𝐶𝑂𝑁𝑇𝑅𝑂𝐿𝑆𝑖,𝑡 + 𝑢𝑖 + 𝑣𝑡 + 𝑒𝑖,𝑡  (3)  

where 𝐹𝐿𝑂𝑊𝑖,𝑡 is the new money growth for fund i in month t and fund performance, 

PERF, is measured by the four-factor (CH-4) alphas as explained earlier. Note that we include in 

the model the fund and time fixed effects captured by 𝑢𝑖 and 𝑣𝑡, respectively, to ensure the results 

are not driven by fund characteristics or time trends; the standard errors are also double clustered 

by fund and time. Given that our sample includes mutual funds from Australia and New Zealand, 

we also include a country dummy in the model to account for country fixed effects. However, for 

the simplicity of exposition, we exclude the country subscript in our formulas. This model tests 

the effect of past performance on subsequent fund flows where a positive and significant 𝑏1 value 

indicates that investors use past performance as a signal for future performance, thus leading to a 

positive (negative) effect on subsequent flows as a result of positive (negative) performance. 

Finally, the model also includes the square of the performance term (𝑃𝐸𝑅𝐹_𝑆𝑞𝑢𝑎𝑟𝑒𝑑𝑖,𝑡−1) to 

account for potential non-linearities in the relationship between past performance and flows. 

2.4. The effect of climate uncertainty on fund flow performance sensitivity 

 
7 It must be noted that the flow-performance relationship remains largely consistent when we use market-adjusted 

fund returns and CAPM-alphas (additional results are available upon request).  
8 Ken French’s data library: http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html#International. 

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html#International
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To test the fund flow-performance relationship in the context of climate risk, we augment 

the benchmark model in Equation 3 to account for the effect of climate risk. Specifically, we 

employ the following regression to test our primary hypothesis that climate risk weakens a fund’s 

flow-performance sensitivity and estimate 

𝐹𝐿𝑂𝑊𝑖,𝑡 = 𝛾1𝑃𝐸𝑅𝐹𝑖,𝑡−1 + 𝛾2 log(𝐶𝑅𝐼𝑡−1) + 𝛾3𝑃𝐸𝑅𝐹𝑖,𝑡−1x 𝐶𝑅𝐼𝑡 + 𝛾4𝑃𝐸𝑅𝐹 − 𝑆𝑞𝑢𝑎𝑟𝑒𝑑𝑖,𝑡−1 +

𝐶𝑂𝑁𝑇𝑅𝑂𝐿𝑆𝑖,𝑡 + 𝑈𝑖 + 𝜗𝑡 + 𝜀𝑖,𝑡                      (4) 

where 𝐹𝐿𝑂𝑊𝑖,𝑡 is the new money growth for fund i in month t, 𝑃𝐸𝑅𝐹𝑖,𝑡−1 is the four-factor 

(CH-4) alpha for the fund and 𝐶𝑅𝐼𝑡 is the climate risk index captured either by the Transition Risk 

Index (TRI) or Physical Risk Index (PRI) described earlier. In this formulation, a significant 𝛾2 

captures the marginal effect of climate uncertainty on fund flows, while 𝛾3 is used to test whether 

higher climate uncertainty has any impact on the predictive power of past performance on 

subsequent flows. From an investor learning perspective, a negative and significant estimate for 

𝛾3 would indicate that the funds’ flow-performance sensitivities decrease with uncertainty, 

suggesting that higher climate uncertainty described in Section 2.2 hurts the informative role of 

past performance regarding managerial skills, thus weakening the signals for the predictability of 

future flows. However, considering that our measures of climate uncertainty capture climate risk 

from different aspects, one from a physical risk and the other from a transitional risk aspect, we 

estimated models separately for each type of risk to distinguish between the effect of each type of 

climate uncertainty on the sensitivity of fund flows to past performance. Finally, the model 

includes the fund and time fixed effects captured by 𝑢𝑖 and 𝑣𝑡, respectively, to ensure the results 

are not driven by fund characteristics or time trends; the standard errors are also double clustered 

by fund and time. 

In addition to controlling for the fund, country and time fixed effects in all our tests, we 

also include several non-performance-related control variables that have been shown to explain 

fund flows and their sensitivity to performance in the literature. Given the evidence that larger 

funds are expected to attract more flows (e.g., Chevalier and Ellison, 1997; Sirri and Tufano, 1998; 

Barber et al., 2005), we include log (Assets)(t-1) as a fund-level control variable. Likewise, 

following the argument in the literature that flow sensitivity to performance should be weaker for 

funds with longer track record i.e., older funds, we also control for fund age as a determinant of 

flows by including log (Fund Age)(t-1) in the model. As mentioned earlier, we also include the 
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squared measure of performance (𝑃𝐸𝑅𝐹_𝑆𝑞𝑢𝑎𝑟𝑒𝑑𝑖,𝑡−1) in the model to account for the convex 

flow-performance relationship as it is found in the literature that flows respond asymmetrically to 

positive and negative performance. Following the evidence in the literature that return volatility 

weakens the flow performance sensitivity (Huang et al., 2022), another control variable included 

in the model is return volatility (Volatility(t-1)) calculated as the time-series standard deviation of 

the fund’s monthly returns over months t-1 to t-11. Finally, following a number of papers including 

Renneboog, Horst and Zhang (2011), Ferreira, Keswani, Miguel and Ramos (2012), among others, 

to account for the mutual fund investment style in our tests, we include the Size, Market (MKT) 

and Momentum (WML) betas obtained by estimating 36- month rolling regressions of the Fama-

French (2015) 5-factor model on raw fund returns. Note that all control variables are lagged by 

one-month. 

3. Empirical Results 

3.1. Fund flow-performance relationship 

Table 3 presents the results for Equation 3 that the tests the effect of fund performance (in 

addition to several fund level controls) on monthly fund flows. Fund performance is measured by 

four-factor (CH-4) alphas and fund flows are based on Franzoni and Schmalz (2017). The 

explanatory variables with subscript (t-1) are lagged by one month. We report the findings for all 

funds in the sample and for funds in the Low, Medium and High ESG risk categories based on the 

sustainability ratings published by the Morningstar database. The results for all funds in the sample 

confirm the positive relationship between fund flows and past performance, indicating that fund 

flows respond positively to past performance, thus leading to money inflows to the funds. We find 

that every 1% increase in past performance of a fund predicts a 0.659% inflow. Interestingly, 

however, when we examine the results for funds across the ESG ratings, we find that the response 

of fund flows to past performance is stronger for low ESG risk, i.e., sustainable rated, funds, with 

every 1% increase in past performance predicting a 1.175% rise in money inflows into the funds. 

This is in contrast with the insignificant or weak flow-performance sensitivity observed for the 

high and average ESG risk funds, suggesting that investors learning regarding managerial ability 

to deliver in the future is relatively stronger for funds that have relatively stronger sustainability 

ratings. For these funds, consistent with the models of Berk and Green (2004) and Huang et al. 

(2022) where rational investors use past returns as a signal to form their posterior expectations 
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about the ability of a fund manager, we find that this is more the case for funds that enjoy high 

ESG ratings.  

While fund size is found to be negatively related to flows across all ESG categories, 

implying that larger funds tend to experience relatively lower money flows, we find that fund age 

is positively related to flows, suggesting that funds with longer histories tend to enjoy greater 

money flows as the older the fund, the more investors know about the manager’s track record, thus 

providing valuable information for investors in their decision making to allocate their capital to 

these funds. Although return volatility seems to be insignificant for subsequent flow dynamics, we 

observe a negative and significant volatility effect on flows for high ESG risk funds, possibly as 

investors view higher ESG risk coupled with greater volatility in their past performance as a 

negative indicator of future performance, which in turn, negatively affects flows into these funds. 

Finally, further examining the coefficient of performance squared, we find a positive and 

statistically significant value for all funds (0.129), implying the presence of an asymmetric 

response of fund flows to past performance such that flows respond asymmetrically to good and 

poor past performance i.e., there is more inflow of money than outflow of money to the funds. 

This is consistent with the previous literature (see e.g., Chevalier and Ellison, 1997; Siri and 

Tufano, 1998, Busse, 2001; and Del Guercio and Tkac, 2002). Overall, while the benchmark model 

on the fund flow-performance relationship confirms the positive association between flows and 

performance, we observe some heterogeneity in the sensitivity of these funds when categorized 

based on their ESG ratings. 

3.2. The effect of climate risk on the fund flow-performance sensitivity 

As explained earlier, we test the effect of two types of climate risks (i.e., transitional risk, 

and physical risk) on the fund flow performance sensitivity via Equation 4. Panels A and B in 

Table 4 present the results for transition and physical climate risks, respectively. In each panel, we 

confirm the positive flow-performance relationship, suggesting that flows respond positively to 

past performance, indicated by the positive coefficient for PERF. Interestingly, however, when we 

examine the coefficients for Climate Risk (CRI), while transition climate risk is found to have a 

positive effect on flows in Panel A, we find that physical climate risk (Panel B) has the opposite 

effect on flows, with the strongest climate uncertainty effect on flows observed for low ESG risk 

funds. Considering that transition climate risk captures the uncertainty faced by certain institutions 
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or sectors associated with the operational or regulatory changes driven by climate change (Cepni 

et al., 2023), the finding that flows respond positively to higher transition risk could be a 

manifestation of the preference by retail investors towards professional money management when 

it comes to managing their investment in the wake of regulatory or operational risks that affect 

firms. In contrast, physical climate risk materializes in a physical form wherein either extreme 

weather events or climate chronic hazards incur financial losses for the firm and the society (Bua 

et al. 2021, Cepni et al. 2022). Accordingly, the negative relationship between physical climate 

risk and flows could be due to the increased preference by investors towards safe haven assets like 

gold during periods of high physical climate uncertainties as investors move their investments out 

of risky equities during such periods of stress.  

Further examining the interaction between the fund’s past performance and climate 

uncertainty, 𝑃𝐸𝑅𝐹(𝑡−1)x 𝐶𝑅𝐼, we find that the interaction term is positive and significant for the 

entire sample of funds, consistently for both the transition and physical climate risk. This means 

that higher climate uncertainty, irrespective of its nature, makes fund flows more sensitive to past 

performance. When we split our sample based on the sustainability ratings, however, we see that 

the positive effect of the interaction between climate uncertainty and past performance on flows is 

primarily driven by funds that have low ESG risks. This finding suggests that high climate 

uncertainty drives greater allocation of capital to more sustainable funds as a result of favourable 

past performance, implying that investors attribute greater importance to past performance for ESG 

funds managers during periods of high climate uncertainty. Interestingly, however, we observe the 

opposite effect for high ESG risk funds and in the case of transition climate risk in Panel A. We 

find that the interaction between the fund’s past performance and climate uncertainty has a 

negative effect on flows for high ESG risk funds, implying that when climate uncertainty is high, 

a one percentage point increase in fund return increases flows by significantly less than the case 

when climate uncertainty is low. This suggests that high transition climate risk dampens the flow-

performance relationship, particularly in the case of low-quality sustainable funds, which means 

that investors’ learning about the managerial skills of funds with high ESG risk is significantly 

affected by the climate uncertainty that is associated with the operational or regulatory changes 

faced by certain institutions or sectors of the economy. Overall, these results show that climate 

uncertainty indeed affects investor learning regarding managerial skills and this is particularly the 

case for funds that have greater ESG risks.  
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Tables 5a and 5b present the results for Equation 4 that tests the effect of climate risks and 

fund performance (in addition to several fund level controls) on monthly fund flows across the 

international and domestic funds. Panels A and B present the results domestic and international 

focused funds, respectively. As noted earlier, to classify the funds into international and domestic, 

we use the fund investment category from Morningstar. Tables 5a and 5b present the results based 

on transition and physical climate risk, respectively. Consistent with the findings reported in Table 

4, we find that flows respond positively (negatively) to higher transition (physical) climate 

uncertainty, consistently across both the international and domestic focused funds. This finding 

further supports our earlier inferences that the effect of climate uncertainty on money flows in and 

out of professionally managed funds is indeed dependent on the nature of the climate risk in the 

form of its physical or transitional nature. Interestingly, we observe that past performance is less 

of a concern for international focused funds implied by the insignificant coefficients for PERF in 

Panel B in both tables. In the case of domestic funds, however, we find that past performance is a 

strong predictor of flows only for funds with high ESG risk. This means that when investors 

evaluate funds with poor ESG performance, they place more emphasis on the past performance of 

these funds as an indicator of managerial skills whereas past performance becomes less of a 

concern regarding managerial skills when it comes to funds with superior ESG performance. This 

is indeed consistent with the evidence that environmental and social investments have been quite 

resilient during the COVID-19 crisis (Albuquerque et al., 2020) and investors remained focused 

on sustainability even during periods of high uncertainty (Pastor and Vorsatz, 2020; Yousaf et al., 

2022).  

Examining the interaction between the fund’s past performance and climate uncertainty, 

however, we find that the effect of climate uncertainty on the flow-performance relationship is 

largely restricted to domestic funds rather than their international focused counterparts. It could be 

argued that the enhanced diversification offered by international focused funds alleviates the 

climate related concerns of investors and climate uncertainty becomes less of a factor when it 

comes to assessing managerial skills in the context of past performance for these funds. For 

domestic funds, however, we find in Panel A of Table 5a that the interaction term is positive and 

significant for low ESG risk funds whereas the opposite holds for high ESG risk funds. This means 

that high climate uncertainty hinders investor learning, particularly when it comes to funds with 

poor ESG performances, dampening the flow-performance relationship for those funds. In 
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contrast, we observe the opposite pattern for low ESG risk funds with a positive interaction term, 

suggesting that past performance becomes more of an indicator of managerial skills for these funds 

under high climate uncertainty. Considering that high ESG ratings for a fund indicates greater 

transparency and information available for investors regarding fund holdings and characteristics, 

thus alleviating information asymmetries between the investors and fund managers, one can argue 

that investors feel more confident to use past performance as an indicator of managerial skills for 

these highly rated funds during periods of high climate uncertainty. In contrast, for funds with poor 

ESG ratings, high climate uncertainty hinders investors’ learning regarding the investment skills 

of fund managers, thus making past performance less of an indicator for future performance. 

Overall, our findings show that climate uncertainty indeed plays a significant role over investor 

learning regarding managerial skills. However, the role played by climate uncertainty depends on 

the ESG performance of these funds and the nature of climate risk. Furthermore, transition climate 

risk that captures the uncertainty faced by investors regarding the operational and/or regulatory 

implications of climate change on firms and sectors of the economy, is found to be a more 

dominant determinant of the fund flow-performance sensitivity of managed funds, consistent with 

the evidence in Faccini et al. (2021) that transition climate risk is a dominant driver of stock returns 

compared to physical climate risk.  

4. Robustness checks and supplementary analyses  

4.1. Climate risk and asymmetries in fund flow-performance sensitivity 

To ensure that our results and inferences regarding the effect of climate uncertainty on the 

fund flow-performance relationship are robust, we perform several additional tests. First, we re-

examine our main hypothesis (i.e., uncertainty effect on the flow-performance sensitivity of a 

fund) by employing an alternative specification along the lines of Bollen (2007) and Renneboog, 

Horst and Zhang (2011). This supplementary analysis not only allows us to check the robustness 

of our findings obtained from the models described in Equations 3 and 4, but also broadens our 

understanding of the nexus between climate uncertainty and fund flow performance sensitivity by 

accounting for possible asymmetries in the flow-performance relationship with respect to the sign 

of the past returns. The benchmark specification in this alternative approach is formulated as  

𝐹𝐿𝑂𝑊𝑖,𝑡 = (𝜑1𝑅+ + 𝜑2𝑅−)𝑅𝑒𝑡𝑢𝑟𝑛𝑖,[𝑡−1,𝑡−12] +  𝐶𝑂𝑁𝑇𝑅𝑂𝐿𝑆𝑖,𝑡 + 𝜃𝑖 + 𝜏𝑡 + 𝑒𝑖,𝑡         (5) 
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where 𝐹𝐿𝑂𝑊𝑖,𝑡 is the new money growth for fund i in month t, 𝑅𝑒𝑡𝑢𝑟𝑛𝑖,[𝑡−1,𝑡−12] is the 

average CH-4 alpha of fund i over months [t-1, t-12] and R+ and R- are indicator variables that 

equal one if the CH-4 alpha is non-negative or negative, respectively. In this formulation, positive 

and significant values for 𝜑1 and 𝜑2 would indicate that fund flows follow the direction of past 

performance in a symmetric fashion such that positive (negative) past performance predicts fund 

inflows (outflows) in the following month. Note that we account for the fund and time fixed effects 

by including 𝜃𝑖 and 𝜏𝑡 in the model, respectively and estimated the standard errors as double 

clustered by fund and time. 

Next, to examine the effect of climate uncertainty on the sensitivity of fund flows to past 

performance, we augment the benchmark model in Equation 5 by incorporating climate risk in the 

model as  

𝐹𝐿𝑂𝑊𝑖,𝑡 = (𝜑1𝑅+ + 𝜑2𝑅−)𝑅𝑒𝑡𝑢𝑟𝑛𝑖,[𝑡−1,𝑡−12] + (𝜑3𝑅+ + 𝜑4𝑅−)𝑅𝑒𝑡𝑢𝑟𝑛𝑖,[𝑡−1,𝑡−12] ∗  𝐶𝑅𝐼𝑡 +

 𝐶𝑂𝑁𝑇𝑅𝑂𝐿𝑆𝑖,𝑡 + 𝜃𝑖 + 𝜏𝑡 + 𝑒𝑖,𝑡                 (6) 

where 𝐶𝑅𝐼𝑡 is the climate risk index captured either by the Transition Risk Index (TRI) or 

Physical Risk Index (PRI) described in Section 2.2. In this augmented formulation, negative and 

significant estimates for 𝜑3 and 𝜑4 indicate that the funds’ flow-performance sensitivities decrease 

with uncertainty, suggesting that higher climate uncertainty hurts the informative role of past 

performance regarding managerial skills, thus weakening the signals for the predictability of future 

flows. As mentioned earlier, one advantage of this alternative approach is that it allows us to 

separate the effect of good past performance (positive return) from the effect of bad past 

performance (negative return) on subsequent fund flows and investigate possible asymmetries in 

investor learning with respect to the sign of past fund performance. 

Table 6 presents the results for Equation 5 based on the specification by Bollen (2007) and 

Renneboog, Horst and Zhang (2011). We observe that fund flows respond strongly to positive past 

returns, implied by the positive and significant 𝜑1 estimates. We find for the overall sample of 

funds that every 1% percent increase in past returns (in the positive direction) leads to a 1.559% 

increase in the inflow of funds subsequently. However, this pattern applies primarily to funds with 

low ESG risk, supporting our previous inference that ESG performance of a fund tends to enhance 

investor learning regarding managerial skills, making their flows more sensitive to past 

performance. For funds with average and high ESG risk, however, we find that the estimated 𝜑1 



19 

 

values become smaller, eventually turning insignificant for high ESG risk funds. The difference in 

response between low and high ESG risk categories is consistent with the evidence by Bollen 

(2007) and Renneboog et al. (2011) who argue that investors in low ESG risk funds (sustainable 

funds) consider non-financial attributes (ESG attributes) while making investment allocations 

decisions, however, their capital allocation decision is conditional on the past performance so that 

when a fund’s past performance is favourable, investors use this as a signal to confirm the ability 

of the fund manager. This argument is further supported by the finding that the fund flow response 

to negative returns is insignificant for all fund categories with the exception of low ESG risk funds 

for which we find that past performance serves as a predictor of subsequent fund flows in both 

cases. The additional results, thus, provide further insight to our previous findings, highlighting 

the ESG classification of a fund as a driver of investor learning regarding managerial skills. 

Further extending our analysis to the role of climate risk, we present the results for Equation 

6 in Table 7, which tests the effect of transition (physical) climate risks and fund performance (in 

addition to several fund level controls) on monthly fund flows based on the alternative 

specification by Bollen (2007) and Renneboog. Panels A and B report the findings for the transition 

(TRI) and physical (PRI) climate risks, respectively. While the findings confirm the informative 

role of past performance on subsequent flows, particularly for low ESG risk funds, we find that 

the interaction term for positive past returns (𝜑3) is positive and significant for low ESG risk funds 

and only in the case of transition climate risk in Panel A. This means that higher uncertainty 

regarding the transitional implications of climate change in the economy, makes flows to low ESG 

risk funds more sensitive to past performance. In other words, high transition risk contributes to 

investor learning for more sustainable funds, particularly when past performance is favourable. In 

contrast, we find that poor past performance plays a more informative role primarily for high ESG 

risk funds, providing signals regarding managerial skills, thus capturing predictive information 

regarding future flows. Overall, the additional tests provide further insight to our analysis in that 

investor learning is affected by not only the nature of climate uncertainty faced by the economy, 

but also the sustainability of the fund under consideration. 

In Tables 8a and 8b, we further explore the role of climate uncertainty in international and 

domestic funds by re-estimating Equation 6 for domestic (Panel A) and international (Panel B) 

focused funds, using transitional and physical climate risk as sources of climate uncertainty, 
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respectively. In Panel A, we observe that climate risk, irrespective of its nature as transition or 

physical risks, plays a significant role on investor learning, particularly for domestic funds with 

low ESG ratings (high ESG risk). High climate risk dampens the sensitivity of domestic fund flows 

to past performance when past performance is good, implied by a negative and significant 𝜑3 

estimate for domestic funds in both tables. This suggests that when evaluating high ESG risk funds 

with a domestic focus, investors see lesser value in favourable past performance when challenged 

with greater climate uncertainty, which in turn makes these funds’ flows less sensitive to past 

performance. This implies that high climate uncertainty in fact hinders investor learning in 

domestic funds that have low ESG ratings. In contrast, significant and positive 𝜑4 estimates for 

high ESG risk funds in Panel A of both tables imply that high climate uncertainty enhances fund 

flow-performance sensitivity when past performance is poor, suggesting that investors attribute 

greater importance to poor past performance regarding managerial skills in high ESG risk funds 

when faced with climate uncertainty. This inference also applies to international focused funds in 

Panel B, suggesting that past poor performance plays an even more important predictive role for 

managerial skills when investors evaluate high ESG risk funds under high climate uncertainty.  

Finally, as supplementary checks, we conduct two additional tests. First, we re-estimate 

our models by using an alternative approach to estimate fund alphas based on the country level 

risk factors rather than regional risk factors that we used in our main analysis. To that end, we first 

obtained the country specific risk factors for Australia and New Zealand from the data library of 

Jensen, Kelly, and Pedersen (2022).9 Next, we re-estimated the four-factor fund alphas via 𝑅𝑖,𝑐,𝑡 −

𝛽𝑖
𝑚𝑘𝑡𝑀𝐾𝑇𝑚 + 𝛽𝑖

𝑠𝑚𝑏𝑆𝑀𝐵𝑚 + 𝛽𝑖
ℎ𝑚𝑙𝐻𝑀𝐿𝑚 + 𝛽𝑖

𝑚𝑜𝑚𝑀𝑂𝑀𝑚 where the risk factors are the country-

specific factors. As a second robustness check, we re-estimated our models by replacing the 

climate risk index used in our tests with an alternative climate risk index (CRI_NW) that is 

constructed similarly to the original indexes via textual analysis but excludes the news articles 

published on the weekends. The rationale behind this alternative measure is that excluding the 

news articles published over the weekend allows us to mitigate possible stale information effects 

on market prices since timelier public information results in a closer alignment of information sets 

 
9 The data for country specific risk factors can be found at https://jkpfactors.com/. 

https://jkpfactors.com/
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of traders (Gropp and Kadareja, 2012). Although we do not report these additional tests to save 

space, we find that our results continue to hold and yield similar inferences.10 

4.2. Sensitivity to climate risk and fund characteristics 

To provide further insight to the interaction between climate risk and the flow-performance 

sensitivity of funds, in the final step of our analysis, we explore whether funds whose flows are 

more sensitive to climate uncertainty display markedly different features compared to funds whose 

flows are less sensitive. Given the evidence presented so far that climate uncertainty plays a 

significant role in investor learning, it is possible that certain fund features that are associated with 

the climate betas of these funds drive the observed interaction between climate uncertainty and 

investor learning. To that end, we first sort the entire sample of funds into quintiles based on the 

sensitivity of their net flows to climate uncertainty by employing a 36-month rolling window 

regression as 

𝑁𝐹𝑖,𝑡 = 𝛼𝑖,𝑡 + 𝛽𝑖,𝑡
𝑐 𝐶𝑅𝐼𝑡 + 𝜀𝑖,𝑡             (7) 

where 𝑁𝐹𝑖,𝑡 is the net flow for fund i in month t, 𝐶𝑅𝐼𝑡 is the climate risk (transition – TRI 

or physical – PRI) in month t, and 𝛽𝑖,𝑡
𝑐  is the climate beta for fund i in month t. Using the estimated 

climate betas, we then sort the funds in the sample into value-weighted quintile portfolios where 

Quintile 5 (1) contains funds whose flows are the most (least) sensitive to climate uncertainty.  

Table 9 reports the univariate distribution of fund returns along with other fund 

characteristics of the quintile portfolios based on their climate betas reported in the second column 

in each panel. Panels A and B report the results for funds sorted on their sensitivity to transition 

(TRI) and physical (TRI) climate uncertainty, respectively. We observe in both panels that funds 

whose flows are more sensitive to climate uncertainty yield significantly higher raw and risk-

adjusted returns. The return spread between high and low climate beta funds is 0.272% and 0.153% 

per month, in Panels A and B, respectively. These numbers are highly significant both statistically 

and economically and remain significant even after adjustment for risk based on the Carhart four 

factor model. The positive risk premium associated with climate sensitivity of fund flows is in fact 

in line with the recent evidence that climate risk exposure serves as a systematic driver of equity 

 
10 The results for these supplementary tests are available upon request from the authors.  
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returns (Faccini et al., 2021; Bolton and Kacperczyk, 2021; Bua et al., 2021; Hsu et al., 2023). 

While funds that are more sensitive to climate uncertainty experience greater flows than funds that 

are less sensitive to climate uncertainty, interestingly, we find that higher climate sensitivity is 

generally associated with lower idiosyncratic volatility, downside risk and fund return volatility. 

Accordingly, one can argue that the climate uncertainty effect on the flow-performance 

relationship of funds could be driven by the sensitivity of the fund flows to climate shocks, which 

in turn, drives the risk and return profiles of these funds. 

5. Conclusion  

This paper presents a novel take on how uncertainty affects investor learning regarding 

managerial skills by examining the role of climate uncertainty on the fund flow-performance 

relationship in ESG rated funds. Specifically, building on the argument that investors use past fund 

performance as a signal to infer fund managers’ ability to generate returns in the future and 

utilizing a bias-free mutual fund dataset that includes all available open-end funds from 

Morningstar Direct for the universe of funds domiciled in Australia and New Zealand, we test 

whether climate uncertainty dampens the sensitivity of a fund’s flows to past performance across 

the funds with high and low ESG ratings. To that end, we first develop two novel indexes of climate 

risk for the Australia-Oceania region via textual analysis of an extensive list of news articles from 

The Australian and The New Zealand Herald associated with the region over the period 2018-

2022. Using the physical and transition climate risk weighted vocabularies of Bua et al. (2021) and 

the cosine-similarity approach of Engle et al. (2020), we then generate novel physical and 

transition climate risk indexes for Australia-Oceania. Our procedure is able to capture the 

distinction between physical and transition risks associated with climate change as the former 

captures various acute physical risks such as extreme weather events associated with the region, 

while the latter captures the developments that are more related to the operational, regulatory or 

policy implications of climate change. 

While our findings confirm the established evidence that fund flows respond positively to 

past performance, we find that the nature of climate uncertainty, in terms of transition or physical 

risk, and the ESG rating of the fund play a significant role on the sensitivity of fund flows to past 

performance. Specifically, we find that the response of fund flows to past performance is 

particularly stronger for low ESG risk funds, i.e., funds with higher sustainability scores, 

https://www.sciencedirect.com/science/article/pii/S1042443122002025#b36
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suggesting that rational investors use past returns as a signal to form their posterior expectations 

about the ability of a fund manager, more so when a fund enjoys high ESG ratings. In contrast, we 

find that high transition climate risk dampens the flow-performance relationship, particularly in 

the case of funds with poor sustainability ratings, implying that investor learning about managerial 

skills in funds with high ESG risk is significantly hindered by the type of climate uncertainty that 

is associated with the operational or regulatory changes faced by certain institutions or sectors of 

the economy. We argue that favourable ESG performance for a fund helps to mitigate information 

asymmetries between the investors and fund managers, which in turn makes investors more 

confident to use past performance as an indicator of managerial skills for highly rated funds during 

periods of high climate uncertainty. Further classifying funds based on their domestic or 

international focus, we find that the effect of climate uncertainty on the flow-performance 

relationship is largely restricted to domestic funds rather than their international focused 

counterparts. We argue that the enhanced diversification offered by international focused funds 

alleviates the regional climate concerns of investors which makes climate uncertainty less of a 

factor when it comes to assessing managerial skills in the context of past performance for these 

funds. 

Further analysis shows that investors reward funds in an asymmetric fashion based on their 

past performance when faced with uncertainty. We find that high transition risk contributes to 

investor learning for funds with higher sustainability scores, particularly when past performance 

is favourable. This means that investors attribute greater weight to favourable past performance 

when they make capital allocation decisions to low ESG risk funds under high transition climate 

uncertainty, highlighting the role of favourable past performance for these funds regarding 

managerial skills. In contrast, we find that poor past performance plays a more informative role 

under high climate uncertainty, primarily for high ESG risk funds, providing signals regarding 

managerial skills, thus capturing predictive information regarding future flows. Overall, our 

analysis shows that investor learning is affected by not only the nature of climate uncertainty faced 

by decision makers, but also the sustainability ratings of the funds under consideration. 

Our findings provide novel insight to the emerging literature on the effect of climate risk 

in financial markets by establishing evidence that climate uncertainty plays a significant role on 

investor learning regarding fund manager ability based on signals from past performance. In 

particular, the findings highlight the informational value captured by ESG ratings on investor 
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learning, particularly when faced with higher climate risks that affect the economy both from a 

physical and regulatory perspective. Although the evidence in the literature generally suggests that 

high uncertainty dampens investors’ ability to process information regarding managerial skills, our 

findings show that this learning process in fact could be enhanced by the ESG performance of 

funds, even under high uncertainty. While climate uncertainty serves as a significant determinant 

of fund flows as a standalone factor, particularly for funds that enjoy favourable sustainability 

ratings, our findings show that high climate risk dampens investors’ ability to process information 

when it comes to funds with poor ESG performance, thus hindering their ability to differentiate 

fund manager ability from luck. These findings have significant implications for the managed fund 

industry and the information asymmetries that may arise between fund managers and investors. 

Future research could benefit from further exploring the fund characteristics that make fund flows 

more sensitive to uncertainty in the hope that we can broaden our understanding of the effect of 

climate uncertainty on investor learning and capital allocation decisions. 
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Figure 1. The distribution of mutual funds across the sustainability (ESG) ratings. 

The figure presents the distribution of mutual funds in the sample across the five ESG ratings over the 

period 2018-2022. The sustainability globe ratings represent funds with high ESG risk (1), above average 

risk (2), average risk (3), below average risk (4) and low risk (5). As shown in Figure A1 in the Appendix, 

a fund with high (low) ESG risk relative to its Morningstar Global Category receives 1 (5) globe. 
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Figure 2. Transition climate risk 2018-2022. 

This figure presents daily transition risk concern (Panel A) and major risk shock topics (vertical bars), 

monthly transition concern (Panel B), and TRI (Panel C) time series from Jan 2018 to Dec 2022. The 

Australian and The New Zealand Herald news with an Australia-Oceania regional focus. “CC” acronym 

for “climate change”. 

Panel A: Daily transition climate risk 

 

Panel B: Monthly transition risk concern Panel C: Monthly transition risk index (TRI) 
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Figure 3. Physical climate risk 2018-2022. 

This figure presents daily physical risk concern (Panel A) and major risk shock topics (vertical bars), 

monthly physical concern (Panel B), and PRI (Panel C) time series from Jan 2018 to Dec 2022. The 

Australian and The New Zealand Herald news with an Australia-Oceania regional focus. “CC” acronym 

for “climate change”. 

Panel A: Daily physical climate risk 

 

Panel B: Monthly physical risk concern Panel C: Monthly physical risk index (PRI) 
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Table 1. Descriptive statistics for fund performance, fund size and flows 

This table presents the monthly averages of fund performance (raw returns), fund size and fund flows each 

year for the full sample (Panel A) and the monthly fund statistics across the five Morningstar sustainability 

ratings (Panel B). Monthly fund flows (%) are computed based on Franzoni and Schmalz (2017) as 

𝐹𝐿𝑂𝑊𝑖,𝑐,𝑡 =
𝑇𝑁𝐴𝑖,𝑡−𝑇𝑁𝐴𝑖,𝑡−1(1+𝑅𝑖,𝑡)

𝑇𝑁𝐴𝑖,𝑡−1
 𝑥 100 where 𝑇𝑁𝐴𝑖,𝑡 is the total net assets (Size) in USD of fund i at the 

end of month t, and 𝑅𝑖,𝑡 is the return of fund i in month t. Panel B presents the average fund performance 

(monthly raw returns (%) (t)), monthly fund flows and fund size for funds across the five sustainability 

ratings. The sustainability globe ratings represent funds in high risk (1), above average risk (2), average 

risk (3), below average risk (4) and low risk (5). A fund with high (low) ESG risk relative to its Morningstar 

Global Category receives 1 (5) globe. The last column in the panel shows the difference between high and 

low ESG risk rated funds along with the corresponding t-statistics in parenthesis. Values for raw returns, 

size and fund flow are winsorized at 1% and 99%. ***, **, and * indicate statistical significance at the 1%, 

5%, and 10% levels, respectively. 

Panel A: Fund performance and flows over time 

Year  Monthly Raw returns (%) (t) Fund Flow (%) (t) Size (Mn) (t)  

2018 -2.72 -0.17 168.14 

2019 1.73 -0.65 170.21 

2020 1.94 -0.52 156.10 

2021 0.52 -1.31 212.44 

2022 -1.15 -0.93 192.91 

All years 0.06 -0.72 179.96 

Panel B: Fund performance and flows across the five sustainability ratings 

Ratings Monthly Raw returns (%) (t) Fund Flow (%) (t) Size Mn (t)  

High risk 0.68 -0.63 148.87 

2 0.40 -0.81 179.35 

3 0.50 -0.93 204.93 

4 0.45 -0.66 160.43 

Low risk 0.34 -0.70 172.53 

High – Low  0.34*** 0.08 -23.67** 

t-stat (2.90) (0.72) (-2.47) 
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Table 2. Descriptive statistics of mutual funds in the sample 

Panels A, B and C present the summary statistics of the mutual fund characteristics for the whole sample, 

low-risk and high-risk funds, respectively. Fund performance is measured by four-factor (CH-4) alphas. 

Fund flows are based on Franzoni and Schmalz (2017). Fund Size is log(assets). Fund Age is the total 

number of months in fund’s existence. Idiosyncratic volatility is computed relative to the benchmark Fama-

French (2015) 5-factor model via rolling regressions as per Ang et al. (2016). Size, MKT and WML betas 

are coefficients obtained through 36- month rolling regressions of the Fama-French (2015) 5-factor model 

on raw fund returns that capture the fund investment styles tilted towards size, market and momentum 

portfolios respectively. The sustainability globe ratings represent funds in high risk (1), above average risk 

(2), average risk (3), below average risk (4) and low risk (5). ***, ** and * denote statistical significance 

at the 1%, 5% and 10% levels, respectively. All values are winsorized at 1% and 99%.   

Panel A: Full sample 

     Mean Std. Dev. Min. p25 Median p75 Max. 

𝐹𝐿𝑂𝑊 -0.797*** 5.874 -20.986 -1.687 -0.374 0.499 17.51 

CH-4 Alpha 0.339*** 0.446 -0.639 0.08 0.352 0.615 1.255 

Raw returns 0.537*** 7.042 -22.38 -2.95 1.11 4.74 17.58 

Volatility 5.935*** 2.738 2.383 4.014 5.181 7.007 14.449 

Fund Size 3.033*** 2.415 -2.761 1.327 3.183 4.854 7.786 

Fund Age (Months) 5.014*** 0.602 3.466 4.691 5.124 5.434 6.035 

Idiosyncratic Volatility 2.689*** 1.079 1.167 1.911 2.416 3.162 5.548 

Size Beta -0.018*** 0.251 -0.663 -0.162 -0.021 0.131 0.594 

MKT Beta 0.884*** 0.146 0.51 0.807 0.892 0.968 1.259 

WML Beta -0.105*** 0.21 -0.555 -0.247 -0.11 0.022 0.442 

Panel B: Low risk funds 

     Mean Std. Dev. Min. p25 Median p75 Max. 

𝐹𝐿𝑂𝑊 -0.704*** 5.992 -20.986 -1.669 -0.402 0.498 19.014 

CH-4 Alpha 0.412*** 0.448 -0.941 0.175 0.43 0.689 1.407 

Raw returns 0.435*** 6.962 -20.25 -3.01 0.68 4.45 17.48 

Volatility 5.927*** 2.584 2.457 4.14 5.264 6.975 13.722 

Fund Size 3.098*** 2.194 -1.433 1.411 3.263 4.886 8.398 

Fund Age (Months) 4.952*** 0.642 3.434 4.543 5.112 5.425 6.061 

Idiosyncratic Volatility 2.881*** 1.135 1.179 2.117 2.597 3.289 6.137 

Size Beta 0.158*** 0.263 -0.638 0.014 0.19 0.32 0.718 

MKT Beta 0.911*** 0.15 0.561 0.827 0.91 1.006 1.206 

WML Beta -0.104*** 0.241 -0.59 -0.267 -0.129 0.044 0.498 

Panel C: High risk funds 

     Mean Std. Dev. Min. p25 Median p75 Max. 

𝐹𝐿𝑂𝑊 -0.626*** 5.656 -20.986 -1.595 -0.31 0.621 17.422 

CH-4 Alpha 0.32*** 0.454 -0.599 -0.024 0.298 0.671 1.298 

Raw returns 0.619*** 7.845 -34.53 -2.95 1.04 4.87 19.78 

Volatility 6.391*** 3.608 2.219 3.86 5.112 7.597 16.15 

Fund Size 3.016*** 2.535 -4.491 1.718 3.397 4.738 7.737 

Fund Age (Months) 5.069*** 0.597 3.497 4.762 5.176 5.533 5.976 

Idiosyncratic Volatility 2.898*** 1.07 1.262 2.086 2.633 3.451 5.402 

Size Beta -0.152*** 0.268 -0.657 -0.351 -0.157 0.019 0.521 

MKT Beta 0.799*** 0.127 0.522 0.717 0.807 0.877 1.074 

WML Beta -0.064*** 0.261 -0.598 -0.257 -0.09 0.101 0.536 
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Table 3. Mutual fund flows and performance 

The table presents the results for Equation 3 that the tests the effect of fund performance (in addition to 

several fund level controls) on monthly fund flows. Fund performance is measured by four-factor (CH-4) 

alphas. Fund flows are based on Franzoni and Schmalz (2017). The explanatory variables with subscript (t-

1) are lagged by one month. Low, Medium and High-risk funds are based on the sustainability ratings 

published by the Morningstar database. The sustainability globe ratings represent funds in high risk (1), 

above average risk (2), average risk (3), below average risk (4) and low risk (5). All models include country, 

fund and time fixed effects. The robust p-values are reported in parentheses. ***, ** and * denote statistical 

significance at the 1%, 5% and 10% levels, respectively. All values are winsorized at 1% and 99%.   

Dependent variable Fund Flow(t) 

Perf:  CH4- Alpha 
 All Funds Low Risk Average Risk High Risk 

PERF (t-1) 0.659*** 1.175*** 0.332 0.750* 

(0.000) (0.005) (0.158) (0.094) 

PERF-Squared (t-1) 0.129*** 0.052 0.406** -0.095 

(0.000) (0.872) (0.033) (0.808) 

Volatility -0.007 -0.015 0.104*** -0.174*** 

(0.714) (0.851) (0.007) (0.001) 

log (Assets) (t-1) -0.759*** -1.052*** -0.859*** -1.477*** 

(0.000) (0.000) (0.000) (0.000) 

log (Fund Age) (t-1) 0.547* 8.660*** 1.487** 2.951** 

(0.094) (0.000) (0.016) (0.015) 

Size Beta 2.084*** 3.431*** 2.248*** 3.752*** 

(0.000) (0.000) (0.000) (0.000) 

MKT Beta  -1.506*** -4.183*** -0.592 0.315 

(0.000) (0.002) (0.345) (0.820) 

WML Beta 1.767*** 2.292*** 2.296*** 2.956*** 

(0.000) (0.002) (0.000) (0.000) 

Intercept  1.683 -33.669*** -3.979 -8.022 

(0.292) (0.000) (0.197) (0.182) 

N 59,770 4,921 24,003 7,071 

R-Squared 0.183 0.214 0.190 0.208 

Country Fund and Time FE  Yes 
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Table 4. Climate risks and fund-flow-performance relationship 

Panels A (B) present the results for Equation 4, that the tests the effect of transition (physical) climate risks and fund performance (in addition to several 

fund level controls) on monthly fund flows. Climate risks (CRI) are captured by the transitional risk index (TRI) and physical risk index (PRI) described 

in Section 2.2 and reported in Panels A and B, respectively. Fund performance is measured by four-factor (CH-4) alphas. Fund flows are based on Franzoni 

and Schmalz (2017). The explanatory variables with subscript (t-1) are lagged by one month. The sustainability globe ratings represent funds in high risk 

(1), above average risk (2), average risk (3), below average risk (4) and low risk (5). All models include country and time fixed effects. The robust p-values 

are reported in parentheses. ***, ** and * denote statistical significance at the 1%, 5% and 10% levels, respectively. All values are winsorized at 1% and 

99%.  

  Panel A: Transitional climate risk index (TRI) Panel B: Physical climate risk index (PRI) 

  All Funds Low Risk Average Risk High Risk All Funds Low Risk Average Risk High Risk 

PERF (t-1) 0.628*** 0.937** 0.349 0.802* 0.706*** 1.277*** 0.325 0.815* 

(0.000) (0.027) (0.140) (0.074) (0.000) (0.002) (0.171) (0.070) 

Climate Risk (CRI) 2.116*** 4.152*** 2.361*** 2.278*** -3.185*** -6.514*** -3.457*** -3.640*** 

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

PERF (t-1) x Climate Risk 0.19** 0.74*** -0.11 -0.47* 0.257*** 0.674*** -0.031 0.382 

(0.013) (0.004) (0.471) (0.096) (0.000) (0.007) (0.829) (0.118) 

PERF-Squared (t-1) 0.117*** 0.111 0.409** -0.057 0.122*** 0.040 0.408** -0.134 

(0.000) (0.733) (0.032) (0.885) (0.000) (0.903) (0.033) (0.732) 

Volatility (t-1) -0.007 -0.015 0.104*** -0.177*** -0.008 -0.010 0.104*** -0.176*** 

(0.734) (0.848) (0.007) (0.001) (0.694) (0.899) (0.007) (0.001) 

log (Assets) (t-1) -0.761*** -1.103*** -0.858*** -1.469*** -0.766*** -1.113*** -0.859*** -1.488*** 

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

log (Fund Age) (t-1) 0.544* 8.883*** 1.481** 2.975** 0.551* 8.836*** 1.485** 2.982** 

(0.096) (0.000) (0.017) (0.015) (0.092) (0.000) (0.017) (0.014) 

Size Beta (t-1) 2.085*** 3.402*** 2.254*** 3.751*** 2.093*** 3.508*** 2.248*** 3.800*** 

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

MKT Beta (t-1) -1.505*** -4.114*** -0.580 0.356 -1.536*** -4.409*** -0.586 0.217 

(0.000) (0.003) (0.355) (0.797) (0.000) (0.001) (0.350) (0.876) 

WML Beta (t-1) 1.741*** 2.247*** 2.309*** 3.037*** 1.709*** 2.278*** 2.304*** 2.800*** 

(0.000) (0.002) (0.000) (0.000) (0.000) (0.002) (0.000) (0.000) 

Intercept  -17.98*** -73.43*** -25.84*** -29.21*** -2.159 -41.854*** -8.298** -12.475* 

(0.000) (0.000) (0.000) (0.002) (0.208) (0.000) (0.012) (0.055) 

N 59,770 4,921 24,003 7,071 59,770 4,921 24,003 7,071 

R-Squared 0.183 0.215 0.190 0.209 0.183 0.215 0.190 0.209 

Country, Fund and Time FE  Yes 
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Table 5a. Investment focus, climate risks and fund-flow-performance relationship 

This table presents the results for Equation 4 that tests the effect of climate risks and fund performance (in addition to several fund level controls) on 

monthly fund flows across the international and domestic funds. Panels A and B present the results domestic and international focused funds, respectively. 

To classify the funds into international and domestic, we use the fund investment category from Morningstar. Climate risks are by the transition (TRI) and 

physical (PRI) risk indexes described in Section 2.2. Tables 5a and 5b present the results based on transition and physical climate risk, respectively. Fund 

performance is measured by four-factor (CH-4) alphas. Fund flows are based on Franzoni and Schmalz (2017). The sustainability globe ratings represent 

funds in high risk (1), above average risk (2), average risk (3), below average risk (4) and low risk (5). The explanatory variables with subscript (t-1) are 

lagged by one month. All models include country, fund and time fixed effects. The robust p-values are reported in parentheses. ***, ** and * denote 

statistical significance at the 1%, 5% and 10% levels, respectively. All values are winsorized at 1% and 99%.  

  Panel A: Domestic funds Panel B: International funds 

  All Funds Low Risk Average Risk High Risk All Funds Low Risk Average Risk High Risk 

PERF (t-1) 0.529*** 0.715 0.298 1.296** 0.010 0.184 -0.589 1.512 

(0.000) (0.305) (0.323) (0.013) (0.967) (0.765) (0.203) (0.387) 

Transition Risk (TRI) 2.046*** 4.018*** 2.624*** 1.402* 2.353*** 5.155*** 2.432*** 2.327* 

(0.000) (0.000) (0.000) (0.054) (0.000) (0.000) (0.000) (0.065) 

PERF (t-1) x TRI 0.026*** 0.082** 0.003 -0.116*** 0.035** 0.069 0.024 0.071 

(0.005) (0.012) (0.904) (0.002) (0.038) (0.114) (0.432) (0.337) 

PERF-Squared (t-1) 0.092*** 0.720 0.259 0.016 0.690*** -0.437 0.944*** -0.227 

(0.001) (0.142) (0.268) (0.971) (0.000) (0.377) (0.007) (0.873) 

Volatility (t-1) -0.054* -0.222* 0.152*** -0.168** -0.019 0.343* 0.050 -1.214*** 

(0.052) (0.067) (0.008) (0.017) (0.750) (0.055) (0.634) (0.000) 

log (Assets) (t-1) -1.047*** -0.831** -1.181*** -1.118*** -0.479*** -1.297*** -0.529*** -2.128*** 

(0.000) (0.040) (0.000) (0.000) (0.000) (0.005) (0.000) (0.000) 

log (Fund Age) (t-1) 1.782*** 7.907*** 3.637*** 0.866 -1.116** 9.904*** -0.969 6.544** 

(0.000) (0.000) (0.000) (0.554) (0.043) (0.000) (0.298) (0.025) 

Size Beta (t-1) 1.904*** 2.229** 2.513*** 2.658*** 3.747*** 7.229*** 4.080*** 6.705*** 

(0.000) (0.012) (0.000) (0.001) (0.000) (0.000) (0.000) (0.000) 

MKT Beta (t-1) -1.004** -3.164 -1.641* -1.409 -4.722*** -9.970*** -5.323*** 7.496* 

(0.034) (0.130) (0.077) (0.449) (0.000) (0.000) (0.000) (0.067) 

WML Beta (t-1) 1.858*** 1.863* 2.418*** 2.878*** 1.123*** 0.945 1.663*** -0.149 

(0.000) (0.062) (0.000) (0.000) (0.004) (0.486) (0.009) (0.949) 

Intercept  -23.11*** -69.72*** -37.32*** -11.61 -10.28** -81.77*** -11.37 -42.80** 

(0.000) (0.000) (0.000) (0.327) (0.017) (0.000) (0.122) (0.037) 

N 38,693 2,401 15,162 5,630 21,077 2,520 8,841 1,441 

R-Squared 0.181 0.231 0.189 0.172 0.189 0.210 0.199 0.272 

Country, Fund and Time FE  Yes 
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Table 5b. Investment focus, climate risks and fund-flow-performance relationship 

  Panel A: Domestic funds Panel B: International funds 

  All Funds Low Risk Average Risk High Risk All Funds Low Risk Average Risk High Risk 

PERF (t-1) 0.625*** 1.054 0.299 1.225** 0.150 0.517 -0.479 1.765 

(0.000) (0.130) (0.323) (0.019) (0.529) (0.383) (0.298) (0.312) 

Physical Risk (PRI) -3.089*** -6.526*** -3.827*** -2.532** -3.569*** -7.859*** -3.755*** -3.447* 

(0.000) (0.000) (0.000) (0.017) (0.000) (0.000) (0.000) (0.063) 

PERF (t-1) x PRI 0.274*** 0.771** -0.014 0.531 0.409** 0.638 0.510* 0.249 

(0.000) (0.012) (0.944) (0.107) (0.010) (0.139) (0.072) (0.724) 

PERF-Squared (t-1) 0.101*** 0.655 0.261 -0.267 0.665*** -0.482 0.924*** -0.345 

(0.000) (0.181) (0.265) (0.549) (0.000) (0.329) (0.009) (0.807) 

Volatility (t-1) -0.053* -0.214* 0.152*** -0.169** -0.020 0.340* 0.051 -1.208*** 

(0.056) (0.077) (0.008) (0.016) (0.730) (0.057) (0.629) (0.000) 

log (Assets) (t-1) -1.052*** -0.846** -1.180*** -1.146*** -0.484*** -1.320*** -0.530*** -2.134*** 

(0.000) (0.037) (0.000) (0.000) (0.000) (0.004) (0.000) (0.000) 

log (Fund Age) (t-1) 1.803*** 7.912*** 3.635*** 0.793 -1.118** 9.778*** -0.948 6.694** 

(0.000) (0.000) (0.000) (0.589) (0.043) (0.000) (0.308) (0.022) 

Size Beta (t-1) 1.898*** 2.301*** 2.513*** 2.822*** 3.794*** 7.395*** 4.116*** 6.822*** 

(0.000) (0.010) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

MKT Beta (t-1) -1.036** -3.388 -1.637* -1.611 -4.831*** -10.383*** -5.530*** 7.374* 

(0.029) (0.105) (0.077) (0.388) (0.000) (0.000) (0.000) (0.072) 

WML Beta (t-1) 1.840*** 1.857* 2.425*** 2.568*** 1.123*** 0.961 1.656*** -0.166 

(0.000) (0.062) (0.000) (0.001) (0.004) (0.478) (0.009) (0.943) 

Intercept  -7.866*** -39.378*** -17.758*** -1.133 7.464*** -42.250*** 6.861 -25.795* 

(0.000) (0.000) (0.000) (0.890) (0.008) (0.000) (0.167) (0.057) 

N 38,693 2,401 15,162 5,630 21,077 2,520 8,841 1,441 

R-Squared 0.181 0.231 0.189 0.171 0.189 0.210 0.199 0.272 

Country, Fund and Time FE  Yes 
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Table 6. Mutual fund flows and performance – alternative specification 

This table presents the results for Equation 5 based on the specification by Bollen (2007) and Renneboog, Horst and 

Zhang (2011). 𝑅𝑒𝑡𝑢𝑟𝑛𝑖,[𝑡−1,𝑡−12] is the average CH-4 alphas of fund i over the months t-1 to t-12; R+ and R- are 

indicator variables that equal one if the CH-4 alpha is non-negative or negative, respectively. The sustainability globe 

ratings represent funds in high risk (1), above average risk (2), average risk (3), below average risk (4) and low risk 

(5). All models include country and time fixed effects. Standard errors are double clustered by fund and time. The 

robust p-values are reported in parentheses. ***, ** and * denote statistical significance at the 1%, 5% and 10% 

levels, respectively. All values are winsorized at 1% and 99%.   

  All Funds Low Risk Average Risk High Risk 

Return x R+ 1.559*** 1.984*** 1.740*** 0.869 

(0.000) (0.000) (0.000) (0.130) 

Return x R- 0.082 -0.992* 0.126 1.458 

(0.564) (0.075) (0.902) (0.175) 

Volatility 0.013 -0.128 0.114* -0.146* 

(0.685) (0.190) (0.073) (0.070) 

log (Assets) (t-1) 0.107*** 0.031 0.129*** 0.120** 

(0.001) (0.700) (0.002) (0.014) 

log (Fund Age) (t-1) -1.026*** -1.208*** -1.020*** -1.403*** 

(0.000) (0.001) (0.000) (0.000) 

Size Beta 0.045 0.439 0.153 -0.029 

(0.959) (0.680) (0.891) (0.977) 

MKT Beta  0.003 0.396 -0.510 3.704** 

(0.995) (0.780) (0.409) (0.020) 

WML Beta 1.319 -0.098 1.768* 1.236 

(0.132) (0.911) (0.087) (0.365) 

Intercept  3.489*** 4.479** 3.243*** 3.928*** 

(0.000) (0.030) (0.000) (0.006) 

N 57,488 4,725 23,273 6,867 

R-Squared 0.079 0.091 0.083 0.104 

Country and Time FE Yes 

Yes Fund and Time Clustered SE  
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Table 7. Climate risk and fund-flow-performance relationship – alternative specification 

Panels A (B) present the results for Equation 6 that the tests the effect of transition (physical) climate risks and fund performance (in addition to several fund level controls) 

on monthly fund flows based on the alternative specification by Bollen (2007) and Renneboog. Climate risks (CRI) are captured by the transition risk index (TRI) (Panel 

A) and physical risk index (PRI) (Panel B) described in Section 2.2. Fund performance is measured by four-factor (CH-4) alphas. Fund flows are based on Franzoni and 

Schmalz (2017). The explanatory variables with subscript (t-1) are lagged by one month. 𝑅𝑒𝑡𝑢𝑟𝑛𝑖,[𝑡−1,𝑡−12] is the average CH-4 alphas of fund i over the months t-1 to t-

12; R+ and R- are indicator variables that equal one if the CH-4 alpha is non-negative or negative, respectively. The sustainability globe ratings represent funds in high 

risk (1), above average risk (2), average risk (3), below average risk (4) and low risk (5). All models include country and time fixed effects. Standard errors are double 

clustered by fund and time. The robust p-values are reported in parentheses. ***, ** and * denote statistical significance at the 1%, 5% and 10% levels, respectively. All 

values are winsorized at 1% and 99%. 

 Panel A: Transitional climate risk index (TRI) Panel B: Physical climate risk index (PRI) 

  All Funds Low Risk Average Risk High Risk All Funds Low Risk Average Risk High Risk 

Return x R+ 1.541*** 1.725*** 1.784*** 0.924 1.544*** 1.767*** 1.695*** 0.793 

(0.000) (0.000) (0.000) (0.105) (0.000) (0.001) (0.000) (0.147) 

Return x R- -0.084 -1.197** -0.087 1.038 0.127 -1.025** 0.022 1.700 

(0.464) (0.018) (0.934) (0.300) (0.224) (0.039) (0.982) (0.108) 

Return x R+ x Climate Risk 0.008 0.070** -0.035 -0.049 -0.017 -0.269 -0.189 -0.275 

(0.491) (0.037) (0.125) (0.308) (0.876) (0.464) (0.294) (0.397) 

Return x R- x Climate Risk 0.051*** 0.045 0.107** 0.210** 0.298*** 0.457 -0.679** 1.457** 

(0.000) (0.243) (0.024) (0.043) (0.000) (0.172) (0.040) (0.037) 

Volatility (t-1) 0.014 -0.122 0.112** -0.148* 0.013 -0.119 0.115** -0.148* 

(0.608) (0.175) (0.014) (0.059) (0.628) (0.189) (0.011) (0.059) 

log (Assets) (t-1) 0.107*** 0.024 0.127*** 0.121*** 0.106*** 0.028 0.128*** 0.122*** 

(0.000) (0.745) (0.000) (0.010) (0.000) (0.708) (0.000) (0.010) 

log (Fund Age) (t-1) -1.024*** -1.192*** -1.018*** -1.392*** -1.024*** -1.205*** -1.016*** -1.391*** 

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Size Beta (t-1) 0.056 0.569 0.148 -0.033 0.047 0.616 0.158 -0.029 

(0.756) (0.370) (0.607) (0.940) (0.795) (0.328) (0.581) (0.947) 

MKT Beta (t-1) 0.009 0.504 -0.508 3.672** 0.004 0.436 -0.522 3.651** 

(0.981) (0.729) (0.357) (0.017) (0.991) (0.768) (0.343) (0.017) 

WML Beta (t-1) 1.294*** -0.275 1.765*** 1.180 1.298*** -0.268 1.782*** 1.182 

(0.000) (0.694) (0.000) (0.122) (0.000) (0.703) (0.000) (0.123) 

Intercept  3.513*** 4.770** 3.352*** 4.170** 3.526*** 4.847** 3.338*** 4.184** 

(0.000) (0.014) (0.000) (0.011) (0.000) (0.013) (0.000) (0.011) 

N 

R-Squared 

57,488 4,725 23,273 6,867 57,488 4,725 23,273 6,867 

0.079 0.092 0.083 0.104 0.079 0.091 0.083 0.104 

Country and Time FE  Yes 

Fund and Time Clustered SE Yes 

 



39 

 

Table 8a. Investment focus, climate risk (TRI) and fund-flow-performance relationship – alternative specification 

Panels A and B present the results for Equation 6 that the tests the effect of climate risks and fund performance (in addition to several fund level controls) on monthly 

fund flows for domestic (international) focused funds, respectively. Climate risks are captured by the transition risk index (TRI) and physical risk index (PRI) described 

in Section 2.2. Tables 8a and 8b present the results based on transition (TRI) and physical (PRI) climate risk, respectively. Following Bollen (2007) and Renneboog, Horst 

and Zhang (2011), 𝑅𝑒𝑡𝑢𝑟𝑛𝑖,[𝑡−1,𝑡−12] is the average CH-4 alphas of fund i over the months t-1 to t-12; R+ and R- are indicator variables that equal one if the CH-4 alpha is 

non-negative or negative, respectively. The sustainability globe ratings represent funds in high risk (1), above average risk (2), average risk (3), below average risk (4) 

and low risk (5). All models include country and time fixed effects. Standard errors are double clustered by fund and time. The robust p-values are reported in parentheses. 

***, ** and * denote statistical significance at the 1%, 5% and 10% levels, respectively. All values are winsorized at 1% and 99%. 

  Panel A: Domestic funds Panel B: International funds 

  All Funds Low Risk Average Risk High Risk All Funds Low Risk Average Risk High Risk 

Return x R+ 1.373*** 1.870*** 1.546*** 1.509** 2.577*** 2.199** 2.633*** -1.810 

(0.000) (0.004) (0.000) (0.026) (0.000) (0.017) (0.000) (0.141) 

Return x R- 0.066 -1.755** 1.900** 0.776 -2.108*** -2.512*** -2.473*** 31.719*** 

(0.587) (0.035) (0.029) (0.441) (0.000) (0.005) (0.000) (0.002) 

Return x R+ x TRI 0.008 0.052 -0.025 -0.118** 0.036* 0.047 0.002 0.059 

(0.613) (0.201) (0.461) (0.043) (0.085) (0.401) (0.951) (0.551) 

Return x R- x TRI  0.049*** 0.026 0.123 0.238** 0.043 0.165** 0.112** 2.163* 

(0.000) (0.678) (0.103) (0.023) (0.190) (0.010) (0.031) (0.053) 

Volatility (t-1) -0.043 -0.309** 0.106 -0.186** -0.050 0.310* 0.163 -1.511*** 

(0.221) (0.014) (0.113) (0.016) (0.606) (0.096) (0.255) (0.002) 

log (Assets) (t-1) 0.126*** 0.220** 0.140*** 0.119** 0.051 -0.102 0.076 0.196 

(0.000) (0.037) (0.000) (0.012) (0.259) (0.308) (0.192) (0.189) 

log (Fund Age) (t-1) -0.877*** -1.089*** -0.904*** -1.014*** -1.259*** -1.164** -1.196*** -2.290*** 

(0.000) (0.004) (0.000) (0.001) (0.000) (0.028) (0.000) (0.001) 

MKT Beta (t-1) 0.036 0.793 0.329 -0.648 0.455 1.263 0.032 4.396** 

(0.856) (0.344) (0.307) (0.159) (0.375) (0.342) (0.966) (0.012) 

WML Beta (t-1) 0.077 2.878** -0.965 3.891*** 0.627 -3.148 -0.359 11.875*** 

(0.875) (0.045) (0.227) (0.008) (0.449) (0.189) (0.755) (0.002) 

Intercept  3.102*** 2.017 3.619*** 1.478 4.146*** 6.811** 3.332** 10.722*** 

(0.000) (0.364) (0.001) (0.391) (0.000) (0.022) (0.011) (0.001) 

N 

R-Squared 

37,595 2,342 14,844 5,584 19,893 2,383 8,429 1,283 

0.086 0.126 0.083 0.104 0.074 0.087 0.089 0.123 

Country, Fund and Time FE  Yes 

Fund and Time Clustered SE Yes 
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Table 8b. Investment focus, climate risk (PRI) and fund-flow-performance relationship – alternative specification 

  Panel A: Domestic funds Panel B: International funds 

  All Funds Low Risk Average Risk High Risk All Funds Low Risk Average Risk High Risk 

Return x R+ 1.382*** 1.962*** 1.457*** 1.199* 2.620*** 2.201** 2.646*** -1.839 

(0.000) (0.004) (0.000) (0.072) (0.000) (0.014) (0.000) (0.161) 

Return x R- 0.277** -1.705** 2.029** 1.495 -1.993*** -1.897** -2.372*** 30.095** 

(0.033) (0.043) (0.019) (0.160) (0.000) (0.017) (0.000) (0.038) 

Return x R+ x PRI 0.024 0.116 -0.278 -0.979** -0.278 -1.423* 0.062 -0.969 

(0.850) (0.739) (0.281) (0.020) (0.243) (0.079) (0.888) (0.388) 

Return x R- x PRI  0.307*** 0.310 -0.617 1.663** 0.223 1.425** -1.001*** 0.612 

(0.000) (0.592) (0.336) (0.020) (0.238) (0.016) (0.005) (0.952) 

Volatility (t-1) -0.044 -0.313** 0.111* -0.185** -0.050 0.304* 0.165 -1.452*** 

(0.212) (0.013) (0.098) (0.018) (0.602) (0.098) (0.247) (0.003) 

log (Assets) (t-1) 0.126*** 0.221** 0.140*** 0.118** 0.050 -0.101 0.077 0.197 

(0.000) (0.036) (0.000) (0.013) (0.267) (0.313) (0.191) (0.197) 

log (Fund Age) (t-1) -0.877*** -1.081*** -0.902*** -1.009*** -1.260*** -1.184** -1.195*** -2.293*** 

(0.000) (0.004) (0.000) (0.001) (0.000) (0.026) (0.000) (0.001) 

MKT Beta (t-1) 0.029 0.771 0.340 -0.643 0.477 1.449 0.036 4.748*** 

(0.884) (0.356) (0.291) (0.161) (0.349) (0.257) (0.961) (0.006) 

WML Beta (t-1) 0.066 2.930* -0.975 3.868*** 0.641 -3.064 -0.373 11.673*** 

(0.894) (0.051) (0.219) (0.008) (0.439) (0.205) (0.746) (0.004) 

Intercept  3.122*** 1.939 3.590*** 1.440 4.130*** 6.869** 3.325** 10.647*** 

(0.000) (0.389) (0.001) (0.398) (0.000) (0.022) (0.011) (0.002) 

N 

R-Squared 

37,595 2,342 14,844 5,584 19,893 2,383 8,429 1,283 

0.086 0.125 0.083 0.104 0.074 0.087 0.089 0.120 

Country, Fund and Time FE  Yes 

Fund and Time Clustered SE Yes 
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Table 9. Climate sensitivity and fund characteristics 

This table presents the descriptive statistics for funds sorted on the sensitivity of fund flows to climate uncertainty (i.e., climate beta) estimated via Equation 

7. Funds in quintile 5 (1) represent funds whose flows are the most (least) sensitive to climate uncertainty, captured by their climate betas reported in the 

second column in each panel. Panels A and B report the results for funds sorted on their sensitivity to transition (TRI) and physical (TRI) climate uncertainty, 

respectively. Fund performance is measured by four-factor (CH-4) alphas and monthly fund flows are based on the flow measure of Franzoni and Schmalz 

(2017). Idiosyncratic volatility is computed relative to the benchmark Fama-French (1993) 5-factor model via rolling regressions as per Ang et al. (2006). 

Downside risk is measured by the Value at Risk values as per Ali et al. (2022a). Return Volatility is the time-series standard deviation of the fund’s monthly 

returns over t-1 to t-11 months. ***, ** and * denote statistical significance at the 1%, 5% and 10% levels, respectively 

   
Climate 

Beta 

Raw 

returns 
CH-4 alpha Fund flow Size (Mn) 

Idiosyncratic 

Volatility 

Downside 

Risk 

Age 

(months) 

Return 

Volatility 

 Panel A: Funds sorted on sensitivity to transition (TRI) climate risk 

Q1 -2.13 0.051 0.235 -2.254 139.631 2.775 -10.018 146.253 5.699 

Q2 -0.614 0.253 0.262 -1.338 188.297 2.77 -10.321 190.902 5.864 

Q3 -0.157 0.253 0.193 -2.793 253.263 2.476 -9.565 185.828 5.765 

Q4 0.283 0.388 0.312 -1.505 221.411 2.334 -9.021 184.158 5.675 

Q5 1.896 0.323 0.319 -0.021 134.783 2.455 -9.07 144.884 5.609 

Q5-Q1 4.026** 0.272*** 0.084*** 2.233*** -4.848*** -0.32*** 0.948*** -1.369** -0.09*** 

t-stats (2.10) (4.44) (14.19) (23.42) (-3.59) (-31.92) (27.76) (-2.59) (-3.02) 

 Panel B: Funds sorted on sensitivity to physical (PRI) climate risk 

Q1 -2.260 0.155 0.147 -1.806 135.540 2.476 -7.666 141.935 4.533 

Q2 -0.482 0.377 0.180 -1.120 161.477 2.406 -7.935 186.633 4.623 

Q3 -0.069 -0.559 -0.658 -8.887 164.290 2.167 -7.753 160.741 4.551 

Q4 0.279 0.301 0.094 -2.847 176.719 2.114 -7.123 172.185 4.495 

Q5 1.939 0.308 0.181 -0.734 158.308 2.238 -7.037 144.613 4.390 

Q5-Q1 4.199*** 0.153*** 0.034*** 1.072*** 22.768** -0.238*** 0.629*** 2.678** -0.143*** 

t-stats (3.4) (5.36) (12.16) (21.06) (1.92) (-42.11) (32.75) (2.14) (-8.72) 
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APPENDIX. 

Figure A1. Globe rating on Morningstar website. 

This figure provides the mapping of the sustainability (ESG) ratings with the rating description and rating 

icon (Globe) as published on the Morningstar’s website.11 

 
11 A fund with high (low) ESG risk relative to its Morningstar Global Category would receive 1 (5) globe. The details 

of the ratings can be found here: https://www.morningstar.com/articles/957266/the-morningstar-sustainability-rating-

explained 

https://www.morningstar.com/articles/957266/the-morningstar-sustainability-rating-explained
https://www.morningstar.com/articles/957266/the-morningstar-sustainability-rating-explained
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Table A1. Descriptive statistics of mutual funds  

Panels D and E present the summary statistics of the mutual fund characteristics for domestic and 

international funds, respectively. Panel F presents the pair-wise correlations among the variables used in 

Panel A. We classify the funds into international and domestic based on the fund investment category from 

Morningstar. Fund performance is measured by four-factor (CH-4) alphas. Fund flows are based on 

Franzoni and Schmalz (2017). Fund Size is log(assets). Fund Age is the total number of months in fund’s 

existence. Idiosyncratic volatility is computed relative to the benchmark Fama-French (2015) 5-factor 

model via rolling regressions as per Ang et al. (2016). Size, MKT and WML betas are coefficients obtained 

through 36- month rolling regressions of Fama-French (2015) 5-factor model on raw fund returns that 

capture the fund investment styles tilted towards size, market and momentum portfolios respectively. ***, 

** and * denote statistical significance at the 1%, 5% and 10% levels, respectively. All the values are 

winsorized at 1% and 99%.   

Panel D: Domestic funds 

     Mean Std. Dev. Min. p25 Median p75 Max. 

𝐹𝐿𝑂𝑊 -0.894*** 5.589 -20.986 -1.702 -0.455 0.355 16.1 

CH-4 Alpha 0.265*** 0.469 -0.652 0.004 0.252 0.534 1.276 

Raw returns 0.56*** 7.494 -24.71 -2.69 1.06 4.93 18.64 

Volatility 6.302*** 3.053 2.416 4.062 5.38 7.885 15.466 

Fund Size 2.957*** 2.38 -2.848 1.316 3.067 4.73 7.488 

Fund Age (Months) 5.087*** 0.573 3.497 4.82 5.182 5.472 6.057 

Idiosyncratic Volatility 2.668*** 1.081 1.136 1.889 2.395 3.143 5.431 

Size Beta -0.045*** 0.265 -0.697 -0.201 -0.054 0.11 0.628 

MKT Beta 0.9*** 0.129 0.537 0.839 0.91 0.974 1.207 

WML Beta -0.049*** 0.203 -0.467 -0.189 -0.057 0.076 0.473 

Panel E: International funds 

     Mean Std. Dev. Min. p25 Median p75 Max. 

𝐹𝐿𝑂𝑊 -0.617*** 6.36 -20.986 -1.667 -0.194 0.794 20.174 

CH-4 Alpha 0.475*** 0.365 -0.58 0.278 0.498 0.705 1.209 

Raw returns 0.495*** 6.126 -14.93 -3.31 1.2 4.345 15.33 

Volatility 5.261*** 1.856 2.346 3.932 4.884 6.339 10.937 

Fund Size 3.173*** 2.471 -2.636 1.355 3.434 5.076 8.374 

Fund Age (Months) 4.88*** 0.631 3.434 4.431 5.011 5.375 5.984 

Idiosyncratic Volatility 2.727*** 1.076 1.248 1.955 2.446 3.187 5.647 

Size Beta 0.032*** 0.216 -0.569 -0.086 0.034 0.158 0.51 

MKT Beta 0.853*** 0.169 0.494 0.757 0.831 0.938 1.293 

WML Beta -0.207*** 0.184 -0.602 -0.336 -0.199 -0.093 0.258 
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Panel F: Pair-wise correlations 

Variables (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

(1) 𝐹𝐿𝑂𝑊 1.000          

(2) CH-4 Alpha 0.069*** 1.000         

(3) Raw returns 0.000 -0.057*** 1.000        

(4) Volatility -0.071*** -0.102*** 0.300*** 1.000       

(5) Fund Size 0.048*** 0.215*** -0.015*** -0.049*** 1.000      

(6) Fund Age -0.128*** -0.053*** 0.008* 0.068*** 0.071*** 1.000     

(7) Idiosyncratic Volatility -0.094*** -0.157*** 0.055*** 0.220*** -0.024*** -0.012*** 1.000    

(8) Size Beta 0.035*** 0.206*** 0.002 -0.057*** 0.010** -0.070*** -0.151*** 1.000   

(9) MKT Beta -0.017*** 0.116*** 0.002 0.249*** -0.019*** 0.112*** 0.000 0.205*** 1.000  

(10) WML Beta 0.054*** -0.254*** -0.008** -0.008* -0.038*** 0.000 -0.354*** -0.111*** -0.084*** 1.000 
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Table A2. AR (1) estimates of physical and transition climate risk concern  

This table presents the estimates of monthly autoregressive process of order 1 concern time series on physical risk (Equation 

1a) and transition risk (Equation 1b) for the period Jan 2018-Dec 2022. Standard errors are shown in parenthesis. 

 𝐶𝑜𝑛𝑐𝑒𝑟𝑛𝑡,𝑃𝑅𝑥100 𝐶𝑜𝑛𝑐𝑒𝑟𝑛𝑡,𝑇𝑅𝑥100 

Drift c 7.01 9.02 

 (0.21) (0.24) 

𝜙 0.51 0.58 

 (0.11) (0.11) 
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Table A3. Transition climate risk top news articles 

This table reports the dates, the Transition Risk Index in percentage (TRI %), the main news topics, and lists of relevant 

article’s title/extracts for the ten days with highest transition risk over the period Jan 2018-Dec 2022. News sourced from 

The Australian and The New Zealand Herald Reuters News with an Asia-Pacific regional focus. “CC” acronym for “climate 

change”. 

Date TRI % Transition risk news topics Transition risk relevant news titles/[extracts] 

08/12/2022 13.19 

Renewable energies, wind, solar, green hydrogen, natural gas; 

Energy transition; Domestic solar manufacturing industry to meet 

AUS 43% emissions reductions by 2030 and net-0 by 2050; Costly 

transition; Nuclear power; AUS National environment protection 

agency; Plibersek reforms; Environment laws; Nature Repair 

Market Regulation 

Forrest the biggest green player after $4bn-plus 

CWP buy; Solar manufacturing industry essential, 

says CSIRO; Highbury helps Forrest land $4bn 

CWP deal; Nuclear should remain a key option in 

energy debate; Finally, laws with teeth to reverse 

decline of nature 

20/05/2020 12.34 

Mitigation actions - AUS $2bn for emission reduction 

technologies; Techn. change in heavy industry and transport; New 

AUS standards for solar panels; NZ renew. energy for a green data 

centre industry 

Climate still a battleground as ALP goes on attack; 

[NZ’s high renewable energy base can rocket us to 

forefront as world shifts to greener, more tech-based 

ways of working in 21st century]; Power must 

‘switch on’ energy reform; Solar panel shake-up to 

offer clarity on supply 

06/08/2020 11.01 

Low emission technologies; Renewable energies; Solar and wind 

energies; CCS; Hydrogen; Environmental regulation; 

Government sustainability issues pressures 

Slump smudges clean energy fund; [Environmental 

regulations] 

06/06/2022 10.54 

Energy mix, hydrogen, natural gas; AUS potential key hydrogen 

supplier to Asia and Europe, $185bn in renew. /hydrogen projects; 

AUS gov. energy mix challenges; CCS; Coal-fired power plants 

closure - job losses; Dispatchable techn.; CC increases energy 

costs; Investors and fossil fuel divestment; AUS needs a 

Germany–like “just transition” principle to ensure an orderly 

transition 

Energy users pre-empting policy on hydrogen: GE; 

Eastern {Australian} states have gas they just need 

the will to extract it; The rise of woke capitalism 

harms national interest; Why natural gas is critical 

for energy security; Labor’s race for answers as 

energy crisis bites; Power workers didn’t need a tech 

guru to show it’s crunch time 

02/11/2018 10.07 

Ocean waves into clean electricity; AUS potential leader in wave 

energy technology; Faster warming oceans warns nations - urgent 

CO2 emissions reduction and CC mitigation, reduce carbon 

budget; Techn. advances, Argo floats, CCS; World's largest solar 

thermal plant in AUS at risk 

Momentum swells for wave energy; Ocean study's 

climate change warning; BHP won’t stop mining 

coal; Row taints review of solar plant 

10/09/2020 9.36 

Renew. energies; Techn. for decarbonisation; Climate risk 

analysis for business decisions; CC and transition in the beef 

industry, CO2 sequestration and offset; Carbon-conscious 

consumer; AUS water reform 

BHP executives face carbon test; Study to beef up 

carbon-neutral credentials; Water reforms a win for 

farmers and improved use 

31/01/2019 8.74 

OECD calls AUS greater efforts on meeting Paris Agreement 

climate targets and GHG emissions reduction, biodiversity 

protection, and chemical handling; Need long-term low carbon 

strategy 

Mixed review from OECD as our biodiversity 

worsens 

24/08/2021 8.60 

Hydrogen energy, AUS hydrogen hub development, potential 

exports to Japan; Carbon emissions reduction; NZ gov. concerned 

on energy transition; Fuel Security 

Rio in deal with Sumitomo for Qld hydrogen hub; 

Strategic logic fuels the race for scale in Z Energy 

takeover 

23/03/2018 8.56 

Turnbull gov. concerned about proposed closure of coal-fired 

power station as renew. energies cannot ensure dispachable 

electricity in AUS, whereas gas, hydro, pumped-hydro, biomass 

and batteries do; Clean energy technology; Energy policy 

Liddell is a loss, but energy guarantee would light 

the way forward 

11/02/2021 8.55 

Net-0 targets; Renew. energy projects Western AUS, pollution 

cuts, Fuel security fears; Hydrogen/nuclear power; AUS 

adaptation water management in a changing climate 

Thinking about our planet in the wake of pandemic; 

State Libs to close coal-fired plants; Fuel security 

fears as Altona closes; Emergency water plan on 

table 
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Table A4. Physical climate risk top news articles 

This table reports the dates, the Physical Risk Index in percentage (PRI %), the main news topics, and lists of relevant 

article’s title/extracts for the ten days with highest physical risk over the period Jan 2018-Dec 2022. News sourced from 

Reuters News with an Asia-Pacific regional focus. “CC” acronym for “climate change”. 

Date PRI % Physical risk news topics Physical risk relevant news titles/[extracts] 

20/05/2020 10.91 

AUS Bushfires and Droughts - lost economic opportunities; NZ 

Droughts Auckland, failure to adapt, resources mismanagement, 

water restrictions, driest start to the year on record 

[Drought-stricken Auckland]; Water storage falls, 

outlook bleak; [Recent bushfires and droughts loss 

of economic opportunities] 

27/02/2018 8.68 

NZ warmest summer in 150 years, heatwaves, droughts, floods, 

shrinking of glaciers, huge deluges, cyclones; Changing ocean 

temperatures and wind speed; Animal extinction and migration; 

Biodiversity loss; sea level rise, global warming; Climate and 

biodiversity protection actions needed; NZ involvement with 

international organizations and NZ National Plan of Action 

[… warmest summer in 150 years. It has been quite 

remarkable really, being 2C above average with 

heatwaves, droughts and floods. Our glaciers shrank 

yet again with the heat.]; Rare albatross in rapid 

decline 

02/06/2020 8.16 

Biodiversity loss; Rivers, lakes, and estuaries degradation; NZ 

gov. environm. policy for freshwater ecosystem; A one in 100-

year storm, landslips, floods in Coromandel, NZ; Changing ocean 

conditions affect marine ecosystem, blue whales at risk; Marine 

heatwaves; Climate adaptation, resiliency and infrastructural 

changes needed; Food security 

Clean river promises have been swept away; 

Coromandel farmers to wake to slips; How NZ’s 

blue whales stay cool and get their krill 

17/01/2022 8.01 

Underwater volcano Hunga Tonga eruption, tsunami, floods; 

Cyclone Cody; Gales, swells, sea surges, coastal inundation; NZ 

mln dollars damage; Rising sea levels, vulnerability of low-lying 

areas; Impact of warming temperatures and extreme weather 

events (droughts, frost, hailstorms, bushfires) on agriculture, 

relocation costs; Need for government CC action; CC impact on 

food prices; Need for management strategies for bushfires 

Cool change a hot topic for wineries; Family fears 

for island home from Tonga swell; Brutal surges 

sink 12 boats, smash marina; {Cyclone} Cody skirts 

New Zealand 

08/03/2018 7.27 

Tropical cyclone Hola NZ; CC impacts NZ native species, habitat 

destruction; Extreme weather, storms, cyclones, swells, king tides, 

massive waves; Hot weather, and rising sea level; Beaches 

erosion; Human health risks; Climate adaptation; Ocean drift 

patterns; Climate models 

Cyclone looms Tropical Cyclone Hola is lying in 

wait just to the east of Vanuatu; Summer storms 

sweep away a generation of little blue penguins; 

Chilling fact is most climate change theories are 

wrong; ‘World's oldest message in a bottle’ surfaces 

after 132 years 

24/06/2021 6.44 
Great Barrier Reef affected by CC; Biodiversity loss; AUS gov. 

environm. Adaptation, China denies "in danger" classification 
China hits back over {Great Barrier} reef ‘smear’ 

07/07/2020 6.02 
NZ water scarcity; NZ CC concerns and pollution/plastic waste 

disposal effects on oceans and marine wildlife 

Park irrigation ‘beyond stupid’; 5 ugly facts With 

Plastic Free July under way, Herald science reporter 

Jamie Morton looks at five figures that reveal the 

alarming enormity of NZ’s plastic problem — and 

five things we can do about it [growing concerns 

about plastic pollution and climate change] 

23/11/2022 5.94 

Longer bushfire seasons, droughts, rising sea and air temperatures; 

Heat extremes, decline in rainfall, sea levels rise, floods/damage 

to coastal areas; AUS gov adaptation, environ. protection; River 

systems; Scarce water savings in the Murray Darling Basin; CC 

disrupts food supply chain in AUS; Food security 

Future shock: more heat, more bushfires, more 

droughts; Why we will oppose reforms to the RMA; 

Up the creek on Murray-Darling water targets; Plan 

needed to keep shelves full 

06/12/2021 5.90 

Heatwaves, floods, fire danger, thunderstorms; Impact of La Nina 

on AUS weather patterns, rivers flood risk; Environment 

protection from increased bushfires risk; Declining natural 

resources, volatile climate, sustainable innovation in the 

food/agriculture industry 

Heatwaves hit west as floods swamp east; Plant-

based meat can feed and protect planet 

01/04/2022 5.79 

Bureau of Meteorology's failure to predict extreme weather events 

that caused flood disasters in NSW and Queensland; Rising 

temperatures; AUS avoided deforestation; Savannah burning; 

Biodiversity loss 

Under-fire weather bureau ‘has been failed on 

funding’; Big project developers back carbon 

market review 

 

 


