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1. Introduction 

The expected return on the equity market—E(R)—over multi-year horizons is one of the most 

important variables in finance. Small changes in the E(R) can have material impacts on factors 

ranging from company investment decisions to the prices consumers pay for the services of 

regulated monopolies, to estimates of the amount that individuals need to save to reach their 

retirement goals. Fama and French (1988) and Campbell and Shiller (1988) made important 

early contributions to this literature. More recently, Golez and Koudijs (2018) document long-

term predictability in a range of markets and time periods and Atanasov, Møller, and Priestley 

(2020) introduce consumption variation as a long-term return predictor. However, despite these 

studies, much less is known about long-term return predictability than the predictability over 

shorter horizons.1 

We run a horse race of the various frameworks and proxies used to generate long-term 

E(R) forecasts and document the performance of the approaches to estimating expected returns 

that have largely been considered in isolation. We show that 10- to 20-year E(R)s can be 

estimated ex ante. Out-of-sample (OOS) forecast improvements over historical mean forecasts 

are as large as 40% even in the most recent period. Importantly, these gains exist within a range 

of time periods. 

The equity valuation model of Gordon (1962) suggests that P0 = D1 / [E(R) – g]. In other 

words, today’s price (P0) is related to next year’s dividend (D1), future growth in dividends (g), 

and the required or expected return on equities in perpetuity (E(R)). Rearranging this formula 

results in E(R) = D1 / P0 + g. However, it is important to note that this is the E(R) on the equity 

market in perpetuity. Over shorter time horizons, there are two reasons why E(R) may be time-

varying. The first is rational. E. suggest that investor risk aversion varies over time, which 

 
1 Long-term return forecasts are more relevant to a range of stakeholders, including investors, businesses, and 

governments. However, data limitations present econometric issues that have impacted this literature (e.g., 

Boudoukh, Israel, and Richardson, 2022). It is therefore unsurprising that most return predictability literature has 

focused on monthly return predictability (e.g., Rapach, Ringgenberg, and Zhou, 2016). 
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implies that different levels of E(R) are required to entice individuals to invest in the equity 

market. The second is behavioral. Shiller (2016) suggests that there are times of overvaluation 

and low E(R), as well as times of undervaluation and high E(R), due to investor psychological 

bias. This suggests that the E(R) for finite horizons is best expressed as E(R) = D1 / P0 + g + 

ΔV, where D1 / P0 is the yield, g is the growth, and ΔV is the valuation change. 

A range of different proxies has been used for each of the three expected return 

components (D1 / P0, g, and ΔV). Furthermore, while some researchers use proxies for the three 

components together, others forecast E(R) using yield or valuation change alone. We run a 

horse race of approaches using “yield alone,” “valuation alone,” “yield and growth,” and a 

combination of all three inputs, which we refer to as “three components.”2 We also consider 

different ways of estimating the inputs to these frameworks. 

 Our evaluation framework addresses various issues that have been raised in the 

literature. Most long-term return prediction papers focus on in-sample analysis, but as Foster, 

Smith, and Whaley (1997) point out, these can be susceptible to data mining. Furthermore, 

overlapping observations are typically used, which can result in bias being introduced into the 

regression analysis. Statistical techniques, such as those developed by Hansen and Hodrick 

(1980), Newey and West (1987), and Hjalmarsson (2011), have been employed to mitigate 

these biases. However, Boudoukh, Israel, and Richardson (2022) show that these widely used 

measures do not completely remove bias from the analysis. We, therefore, focus on OOS 

analysis. As Boudoukh, Israel, and Richardson (2022) note, OOS forecasts and statistics, such 

as the mean square error, are unaffected by overlapping observation bias.3 It is common to 

evaluate the accuracy of forecasted returns by examining their correlation with actual returns 

 
2 Campbell and Shiller (1998) also use the dividend-to-price ratio as a valuation ratio. We adopt the Gordon 

growth framework and thus classify this as “yield alone” rather than “valuation alone,” but this classification has 

no impact on the reported results. 
3 Boudoukh, Israel, and Richardson (2022) propose an in-sample approach that is free from overlapping sample 

bias. However, we do not apply this, as a large focus of our work is to compare the performance of various 

predictive approaches, and this is more readily achieved in an out-of-sample setting. 
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(e.g., Engle, Focardi, and Fabozzi, 2016; Damodaran, 2022). We focus our analysis on mean 

absolute errors (MAEs) and mean square errors (MSEs). We suggest that both the average 

magnitude of the differences between the forecast and actual returns and the extent to which 

forecasted returns track actual returns are important. Both MAEs and MSEs capture these, 

whereas correlations do not reflect the average difference between the forecast and actual 

returns. 

Our results indicate that the three-component framework is superior for 10-year 

forecasts, although not by a large margin. The three-component model that generates ΔV 

estimates based on the wealth portfolio composition of Rintamaki (2023), denoted as VWPC, 

outperforms other three-component models in forecasting 10-year returns for the entire sample 

period from 1891 to 2020. However, in two more-recent sub-sample periods, it is not 

statistically different from other three-component models, such as the one that assigns an equal 

weight to four proxies for ΔV. We suggest that this latter model is superior overall, as it 

performs better in an asset allocation setting. It generates a 34.91% reduction in MAEs and a 

57.70% increase in OOS-R2 compared to the historical mean model for 10-year forecasts over 

the 1891–2020 sample period. Furthermore, a stock-bond portfolio with weights allocated 

based on these E(R) forecasts has an approximately 65.56% higher Sharpe ratio and a 50.06% 

improvement in value at risk (VaR) over the 1891–2020 period. Importantly, this model also 

leads to improvement gains in more recent periods. Twenty-year returns are typically more 

difficult to forecast. However, several approaches, such as the three-component model with the 

total return cyclically adjusted price-to-earnings ratio (TRCAPE) proxy significantly enhance 

the accuracy of these predictions. 

We contribute to several strands of the long-term return predictability literature. Fama 

and French (1988) use a yield-alone approach and show that dividend yields explain more than 

25% of the variance of two- to four-year returns. Campbell and Shiller (1998) contribute to the 
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valuation-alone literature by focusing on predicting 10-year returns using a price-to-earnings 

ratio that is derived from the average earnings over the last 10 years. They suggest that 

accounting for earnings fluctuations over the business cycle is important and show that this 

metric, which is widely referred to as the cyclically adjusted price-to-earnings ratio (CAPE), is 

effective at predicting stock returns. Bogle (1991a, b) introduces the three-component approach 

and suggests that the forecasts of the 10-year returns give “a remarkably precise replication of 

the actual total returns realized.” 

There have been advances in each of these three approaches. The literature on yield is 

mixed. Boudoukh, Richardson, and Whitelaw (2008) and Goyal and Welch (2008) suggest that 

dividend yields are not useful predictors of stock returns for periods of up to five years. 

However, Cochrane (2008) shows that dividend yields have predictive information for stock 

returns over the subsequent 1–25 years. More recently, Golez and Koudijs (2018) find that 

dividend yields predict equity returns over intervals of up to five years in the Netherlands, UK, 

and US. 

The valuation-alone literature has focused on refining measures of CAPE and 

introducing new proxies. Several studies point out that CAPE has underperformed recently, 

which provides motivation for considering modifications. Philips and Ural (2016) suggest 

several modifications, including using cash flows rather than earnings in the valuation ratio 

calculation. Siegel (2016) points out that changes in the calculation of GAAP earnings may 

impact CAPE and recommends using alternative earnings data. Arnott, Chaves, and Chow 

(2017) suggest that adjusting the CAPE based on macroeconomic conditions leads to prediction 

accuracy improvements for short-term forecasts. More recently, Philips and Kobor (2020) 

propose that using one year’s quarterly earnings results in better predictions than the average 

of the last 10 year’s earnings in CAPE, while Waser (2021) finds that variation in the CAPE 

can be explained by variation in the economic variables. 
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Numerous variables have also been considered as valuation proxies. Goyal and Welch 

(2008) conduct a comprehensive evaluation of the ability of a range of variables to predict one-

month to five-year equity returns. These include long-term returns, default return spread, 

inflation, long-term yield, stock variance, dividend payout ratio, default yield spread, treasury-

bill rate, earning price ratio, term spread, equity issuance, book-to-market ratio, net equity 

expansion, and investment-capital ratio. They conclude that none of these generate consistent 

in-sample and OOS predictability. We, therefore, do not include these variables as valuation 

proxies. 

More recently, several papers document effective valuation proxies. Atanasov, Møller, 

and Priestley (2020) document the predictive ability of using cyclical consumption as a proxy. 

They suggest that in good (bad) times with above (below) trend consumption, investors are 

willing (unwilling) to forgo consumption and to invest; therefore, current prices rise (decline) 

and expected returns are lower (higher). They show that cyclical consumption predicts market 

returns up to five years in advance in in-sample tests. Swinkels and Umlauft (2022) test what 

they refer to as “the Buffett indicator” following Warren Buffett’s observation that the market 

capitalization of publicly traded stocks to economic output is an extremely effective valuation 

indicator. Swinkels and Umlauft (2022) show that the Buffett indicator is an effective valuation 

timing tool over a range of horizons in the US and internationally. Finally, Rintamaki (2023) 

documents the ability of the ratio of the value of the stock market to bond and residential 

housing assets to predict equity market returns. He finds strong evidence of predictability in 

in-sample tests for a range of horizons and OOS tests for one year. 

Our contributions are as follows. First, we test the relative performance of the 

alternative frameworks of “yield alone,” “valuation alone,” “yield and growth,” and all “three 

components.” Second, we run OOS tests that are free from look-ahead bias. Third, we consider 

all input variables and frameworks in forecasting 10-year and 20-year long-term returns. 
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Fourth, we consider whether various valuation proxies can be combined to generate superior 

forecasts. 

The rest of this paper is organized as follows. Section 2 contains a description of the 

data. The method and results are described in Section 3, while Section 4 concludes the paper. 

 

2. Variable Construction, Data, and Methods 

We run a horse race of approaches across four frameworks, namely, “yield alone” (YLD), “yield 

and growth” (referred to as “Gordon” or GOR), “valuation alone” (ΔV), and “three 

components” (GOR + ΔV). We start with the “yield alone” framework using a standard 

predictive regression model: 

 

rt:t+h = α + βxt + εt:t+h for t = 1, …, T-h (1) 

 

where rt:t+h = (1/h)(rt+1 +… + rt+h) with h = 10 or 20 years, rt is the S&P 500 log return for year 

t, and xt is one of our four yield predictors, namely, dividend yield, total yield, net total yield, 

and cyclically adjusted total yield (CATY) as per Straehl and Ibbotson (2017). We focus on 

OOS analysis and follow Goyal and Welch (2008) to compute our OOS forecasts. The OOS 

forecasts begin 20 years after the data are available. To generate the h-period ahead OOS 

forecast, we first estimate α and β in Eq. (1) by regressing on the data up to time t. We then 

insert regression estimates back to Eq. (1) and use the value of the predictor variable xt at the 

end of the in-sample period to compute the forecasting value, denoted as r̂t:t+h. We continue 

our calculation by adding one more observation each time in Eq. (1) and using expanding 

windows (e.g., Chiang and Hughen, 2017; Gao and Nardari, 2018) to compute a time series of 

OOS forecasts. 
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For the “yield and growth” or the “Gordon” approach, we employ the classic Gordon 

growth model and calculate the expected return as the sum of a current “yield” and a historical 

averaged “growth” rate over the entire period. We consider the four yields used in Eq. (1). The 

growth rates we use are earnings growth, dividends growth, total yield growth, and CATY 

growth, respectively.4 

The “valuation alone” approach is similar to the “yield alone” approach except we 

replace the four yield predictors in Eq. (1) with four proxies for ΔV, which include: (i) the total 

return CAPE 5  (TRCAPE) as per Jivraj and Shiller (2018); (ii) the total wealth portfolio 

composition (WPC) as per Rintamaki (2023); (iii) the Buffett indicator (BUF), calculated as 

the equity market value scaled by gross domestic product (Swinkels and Umlauft, 2022); (iv) 

cyclical consumption, or CON (Atanasov, Møller, and Priestley, 2020). TRCAPE scales the 

real total return price for the average real earnings over the prior 10 years. It is similar to the 

cyclically adjusted price-to-earnings ratio (CAPE; correlation > 0.99), but it takes dividends 

into account and assumes dividends to be reinvested into the price index. WPC measures the 

value of stock market wealth relative to the value of other assets including residential housing 

and government bonds.6 High WPC ratios predict low future stock market returns (Rintamaki, 

2023). BUF reflects the ratio of the market value of stocks to gross domestic product and it is 

an indicator for equity market mispricing. Swinkels and Umlauft (2022) show that low BUF 

ratios predict above-average 10-year returns. Atanasov, Møller, and Priestley (2020) find an 

inverse relation between aggregation consumption and expected stock market returns. We, 

therefore, use CON as our fourth proxy for ΔV. 

 
4 In unreported results, we also follow Damodaran (2022) and calculate growth as being equal to the risk-free rate. 

This method does not have a material impact on our key conclusions. 
5 We thank Robert Shiller for making these data available: http://www.econ.yale.edu/~shiller/data.htm 
6  We thank Jordà, Schularick, and Taylor for making their data available: https://www.macrohistory.net/ 

database/ 

http://www.econ.yale.edu/~shiller/data.htm
https://www.macrohistory.net/database/
https://www.macrohistory.net/database/
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As noted in Rapach, Strauss, and Zhou (2010), forecast combinations incorporate 

information from individual forecasts and can outperform individual forecasts. We, therefore, 

apply four forecast combining methods that differ in the weights assigned to each forecast 

based on the ΔV predictors: (i) the simple average, taking the arithmetic mean of four individual 

forecasts in each year; (ii) the inverse variance-weighted average (Bates and Granger, 1969); 

(iii) the Granger and Ramanathan (1984) constrained regression approach; (iv) the Bayesian 

model averaging method (Min and Zellner, 1993). We generate composite ΔV forecasts using 

the four combining methods and denote these as VEW, VIVW, VGR, and VBIC. 

With the “three components” approach, we expect stock returns for finite horizons to 

vary with “yield,” “growth,” and change in “valuation” (i.e., YLDDiv + gDiv + V or GORDiv,Div 

+ V). We run the following predictive regression to forecast the OOS h-period-ahead V: 

 

Vt:t+h = γ + δzt + εt:t+h for t = 1, …, T-h (2) 

 

where Vt:t+h is the actual h-period change in valuation, calculated as dividend yield at time t 

and historical dividend growth rate subtracted from actual h-period return rt:t+h. The predictor 

zt is one of our four proxies for V (i.e., TRCAPE, WPC, BUF, and CON). To generate the h-

period-ahead OOS V forecast, we first estimate γ and δ in Eq. (2) by regressing on the data 

up to time t. We then insert regression estimates back to Eq. (2) and use the value of the 

predictor variable zt at the end of the in-sample period to compute the forecasting value, 

denoted as ΔV̂t:t+h. We then calculate the h-period-ahead OOS return forecast as the sum of 

dividend yield and historical dividend growth rate at the end of the in-sample period and 

predicted change in valuation, ΔV̂t:t+h . We continue our calculation by adding one more 

observation each time in the regression and using expanding windows (e.g., Chiang and 

Hughen, 2017; Gao and Nardari, 2018) to compute a time series of OOS forecasts. We also 
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generate composite “three components” forecasts using the four combining methods. We 

provide a description of the proxies and approaches we use in Appendix 1. 

 

3. Results 

We present summary statistics in Table 1. The average annual returns are 10.66%, 11.76%, and 

12.27% for the 1872–2020, 1955–2020, and 1988–2020 periods, respectively. Returns have 

negative skewness across all three sample periods. Kurtosis is negative for the entire period, 

but positive in the more recent periods. In Panel B, we present mean geometric and log returns 

for 10-year and 20-year intervals rolling forward one year at a time. It is these annualized log 

returns that we use in our model forecasts. For the 10-year interval, average annualized log 

returns are 8.65%, 9.40%, and 8.57% for the three periods, respectively, while for the 20-year 

interval, these are 8.73%, 9.68%, and 7.55%, respectively. Similarly, Panel C reports the 

standard deviation of geometric returns and log returns for 10-year and 20-year intervals rolling 

forward one year at a time. 

 

[Please Insert Table 1 About Here] 

 

In Table 2, we report results for 10-year forecasts. We calculate the MAE as the average 

absolute difference between the forecast and actual returns. We also calculate the difference in 

MAEs between each prediction model and the historical mean forecast.7 We measure the 

statistical significance of this difference using the moving block bootstrap method, which 

accounts for autocorrelation in the time series. The optimal block length is determined as per 

Patton, Politis, and White (2009). For each prediction model, we generate 1000 bootstrap 

 
7 We believe that MAEs better reflect the performance of a forecast than correlations as they account for the 

magnitude of errors between forecasted and actual returns. We provide an example in Appendix 2 of a scenario 

where one forecast can have a larger correlation than another forecast (indicating outperformance) and also have 

a larger MAE (indicating underperformance). 
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resamples and report statistical significance based on the one-sided bootstrap p-value (i.e., the 

proportion of the bootstrap sample prediction model MAEs that exceed the historical mean 

model MAE in the same bootstrap sample). 

We are interested in determining whether the lowest model MAE is statistically 

significantly less than the next lowest model MAE across all four frameworks. The procedure 

is as follows. First, we sort our 25 prediction models and the historical mean model based on 

their realized MAEs from smallest to largest. Then, we use the moving block bootstrap method 

to test the statistical significance of the difference in MAEs of the models with the lowest and 

second lowest MAEs. If the difference in MAEs is statistically insignificant at the 1% 

significance level, we continue to test the statistical significance in MAEs of the prediction 

models with the lowest and third lowest MAEs until the difference in MAEs of the two models 

is statistically significant. For example, if the difference in MAEs of the models with the lowest 

and third lowest MAEs is statistically significant at the 1% level, we group the two models 

with the lowest and second lowest MAEs as Tier 1 models and then continue this procedure to 

test the difference in MAEs of the models with the third lowest and fourth lowest MAEs, until 

we group all 26 models into sub-categories.8 

We also compare models using the OOS-R2 metric. We calculate OOS-R2 for each 

prediction model as per Goyal and Welch (2008) as follows: 

 

ROOS
2  = 1 - 

MSEA

MSEN
          (3) 

 

 
8 In Tables 2 and 3, the values in bold are MAEs of Tier 1 models, which have the lowest MAEs. 
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where MSEN is the mean squared forecast error of the historical mean model and MSEA is the 

mean squared forecast error of our alternative prediction model over the OOS period. We then 

use the Clark and West (2007) approach to test H0: ROOS
2  ≤ 0 versus H1: ROOS

2  > 0. 

The results in Table 2 indicate that the three-component framework is the best-

performing framework. For 10-year forecasts, this framework has the lowest average MAE in 

the 1981–2020, 1955–2020, and 1988–2020 periods. To ascertain the statistical difference 

between the “three components” framework and the other three frameworks (i.e., “yield alone,” 

“Gordon,” and “valuation alone”), we first compute the yearly average absolute error for each 

framework over time. Utilizing the resulting four time series, we then apply the Diebold–

Mariano test (Diebold and Mariano, 1995). As shown in Appendix 3, the average absolute error 

of “three components” is statistically significantly lower than “Gordon” in all three time 

periods and statistically significantly lower than “valuation alone” and “yield alone” in two of 

the three time periods. 

The three-component model with the change in valuation driven by WPC and the 

valuation-alone model based on WPC are the best performers over the entire sample period 

based on both the MAE and OOS-R2 metrics. However, as highlighted in bold in Table 2, in 

the two more recent sub-periods, the MAEs of these two measures are not statistically different 

from the MAEs of the four three-component models: (GORDiv,Div + Vk) EW, (GORDiv,Div + Vk) IVW, 

(GORDiv,Div + Vk) GR, and (GORDiv,Div + Vk) BIC. They are also not different to several of the 

valuation-alone approaches based on averaging in the two most recent periods. 

The models we highlight generate a meaningful improvement compared to the 

historical mean forecasts. We will focus on the three-component model with valuation changes 

measured using an equal-weighted approach, (GORDiv,Div + Vk) EW, to demonstrate this point. We 

suggest that this model is the best overall performer for 10-year forecasts when asset allocation 
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considerations are also considered.9 The MAE for the entire period is 0.0273, which is 0.0146 

lower than the equivalent period historical average MAE and represents a 34.91% 

improvement. Furthermore, the ROOS
2  indicates a 57.70% improvement, consistently showing 

that the (GORDiv,Div + Vk) EW model delivers a significantly lower forecasting error than the 

historical mean model. Importantly, these performance gains are also evident in more recent 

sub-periods, with the ROOS
2  being 52.30% and 39.71% in the 1955–2020 and 1988–2020 

periods, respectively. We depict the improvements in forecasting using this model compared 

to historical mean model forecasts in Figures 1a, 2a, and 3a. 

 

[Please Insert Figures 1a, 2a, and 3a About Here] 

 

In unreported results, we measure the proportion of times that each model generates a 

forecasted return that is either greater or smaller than the actual return, along with the average 

error when the forecast is higher or lower than the actual return. The errors of some models are 

particularly asymmetric. For instance, the three-component model based on BUF 

underestimates actual returns 96.97% of the time over the entire period, with an average error 

of 4.86%. When the model overestimates actual returns, the average error is 1.30%. The three-

component model with valuation changes measured using an equal-weighted approach 

generates more symmetrical errors. Throughout the entire period, it overestimates 30.91% of 

the time. However, the average error from overestimation is 2.79%, compared to an average 

error of 2.70% when there is an underestimation of returns. 

 

[Please Insert Table 2 About Here] 

 

 
9 The asset allocation results are reported later in the section. 
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In Table 3, we report equivalent results for a 20-year forecast period. The MAEs from 

the historical mean approach are considerably lower for the 20-year forecast period compared 

to the 10-year forecast period. For instance, the average 20-year forecast period MAE for the 

1988–2020 period is just 0.0129, compared to 0.0403 for the 10-year forecasts. This is 

consistent with the results in Table 1 Panel C, which show lower standard deviations for 20-

year returns. 

However, while the levels of MAEs for each framework and model are typically lower 

than their Table 2 equivalents, the gains over the historical mean approach are also generally 

lower. As with the 10-year forecast results in Appendix 3, the “three components” framework 

generates the strongest results in the 1891–2020 and 1955–2020 periods. However, the 

differences between the frameworks on average are not large. 

As highlighted in bold, the MAEs of several models within each framework are not 

statistically distinguishable from each other. However, we focus on the three-component model 

with valuation changes determined by TRCAPE, as we believe that this model is the best 

performer across all metrics, including asset allocation. During the periods of 1891–2020, 

1955–2020, and 1988–2020, the model generates ROOS
2  improvements of 37.23%, 51.45%, and 

57.05%, respectively. Figures 1b, 2b, and 3b depict the forecasted returns, forecast errors, and 

absolute forecast errors of this model and the historical mean model. 

 

[Please Insert Table 3 About Here] 

[Please Insert Figures 1b, 2b, and 3b About Here] 

 

Prior studies show return predictability is time-varying (e.g., Devpura, Narayan, and 

Sharma, 2018; Jurdi, 2022). In Table 4, we report the MAEs in different market states over 
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time. For each prediction model, we run the following time-series regression with Newey–

West (1987) standard errors: 

 

MAEi,t = αi + βi MKT_STATEt + εi,t       (4) 

 

where MAEi is the 10- or 20-year MAEs for prediction model i, and MKT_STATE is one of our 

four market state proxies, calculated over the same 10- or 20-year period as MAEi. The four 

market state proxies include market return, market volatility, the Amihud (2002) illiquidity 

ratio, and a market recession indicator. Market return and the Amihud (2002) ratio are the 

average annual market return and the average annual value-weighted stock Amihud (2002) 

ratio, respectively. Market volatility is the standard deviation of annual returns over the same 

period as MAEi. The market recession proxy is determined by calculating the proportion of 

months (within a 10- or 20-year period) that fall within recessionary phases of the National 

Bureau of Economic Research (NBER) business cycle. 

The results in Table 4 indicate that forecasts tend to be more accurate (i.e., MAEs are 

lower) when returns are lower. Furthermore, forecasts are more accurate when volatility is 

higher. There is no consistent relation between forecast accuracy and liquidity or the business 

cycle. The business cycle result differs from shorter horizon predictability, which is stronger 

in economic contractions (e.g., Henkel, Martin, and Nadari, 2011). In Appendix 4, we present 

results using mean squared errors as the dependent variable. These are very similar to the results 

in Table 4. It is worth noting that, in terms of 10-year forecasts, a number of “three 

components” models perform similarly well across different market states. 

 

[Please Insert Table 4 About Here] 
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In Tables 5 and 6, we compare the different models from an asset allocation perspective. 

We allocate the portfolio between stocks and bonds using data on the S&P 500 Index and the 

US 10-year government bond total return index. We employ the mean–variance approach and 

consider optimal portfolio weights as the asset weights that maximize the portfolio Sharpe 

ratio. Following the derivation in Smith (2019), we calculate optimal weights and rebalance 

the portfolio annually based on the expected Sharpe ratios of the two assets, their historical 

standard deviations, and the historical correlation between them. To calculate the expected 

Sharpe ratio, [E(R) – Rf]/σ, for the S&P 500 (which serves as one input for determining optimal 

portfolio weights), we use our OOS S&P 500 return forecasts from each of our prediction 

models (i.e., E(R)), historical risk-free rates sourced from the updated Goyal and Welch (2008) 

dataset (i.e., Rf), and historical standard deviations of S&P 500 returns (i.e., σ). Accordingly, 

optimal weights and realized portfolio returns differ across our models in Tables 5 and 6. 

We then generate three performance metrics for realized portfolio returns: 5% value at 

risk (VaR), ex post alpha (alpha), and ex post Sharpe ratio (Sharpe). We employ the 

aforementioned moving block bootstrap approach to bootstrap realized portfolio returns and 

determine whether realized VaR of portfolios constructed based on each of our prediction 

models is significantly improved compared to the historical mean model. Similarly, we also 

examine whether realized alpha values and Sharpe ratios of portfolios based on our prediction 

models are significantly higher than those based on the historical mean model. 

The results in Table 5 indicate that there are important gains from an asset allocation 

perspective. For instance, for the entire period, the VaR for the three-component model with 

equal-weight valuation changes is −8.10%, compared to −16.21% for the historical mean 

model. Furthermore, the Sharpe ratio of this model is 0.3201, compared to 0.1933 for the 

historical mean model. Both differences are statistically significant and economically 

meaningful. These results are not specific to the entire period. For the more recent period of 
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1988–2020, the VaR for the three-component model with equal-weight valuation changes is 

−3.19%, compared to −19.12% for the historical mean model. The alpha for this model for the 

most recent period is 5.00%, compared to 1.81% for the historical mean model. 

 

[Please Insert Table 5 About Here] 

 

Strong gains from an asset allocation perspective are also evident in the 20-year forecast 

results, as shown in Table 6. The three-component model with valuation changes determined 

by TRCAPE generates a Sharpe ratio of 0.3669 for the entire period, compared to 0.2040 for 

the historical mean model. The Sharpe ratio generated by this model is also larger than that of 

the historical mean model in each of the two most recent periods, but the differences are not 

statistically significant. However, the three-component model with valuation changes 

determined by TRCAPE exhibits significantly superior VaRs in both recent periods when 

compared to the historical mean model. For instance, the VaR of this model stands at just 

−3.19% in the 1988–2020 period, compared to −10.53% for the historical mean model. 

 

[Please Insert Table 6 About Here] 

 

4. Conclusions 

Accurately estimating long-term expected returns of equity markets is important for both 

corporate entities and individual investors. We investigate the ability of different frameworks 

and input proxies to estimate 10- and 20-year OOS returns over long historical time periods 

and more recent periods. We document that several approaches generate meaningful 

improvements compared to historical mean model forecasts. OOS-R2 can be as significant as 

40% even in the most recent period, and asset allocation based on our model forecasts can 



18 

 

improve a portfolio’s Sharpe ratio and VaR by over 50%. We hope that our results are of 

interest to those who require accurate long-term expected return forecasts. 
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Table 1 

Summary Statistics  
Panel A: Summary Statistics 

Years Mean Std Dev Skewness Kurtosis 

1872–2020 0.1066 0.1825 −0.2421 −0.0095 

1955–2020 0.1176 0.1648 −0.5684 0.1002 

1988–2020 0.1227 0.1687 −0.8856 0.9094 

          

Panel B: Average of Geometric and Log Returns 

  Geometric Returns   Log Returns 

Years 10-Year 20-Year   10-Year 20-Year 

1872–2020 0.0914 0.0917  0.0865 0.0873 

1955–2020 0.0997 0.1021  0.0940 0.0968 

1988–2020 0.0908 0.0784  0.0857 0.0755 

            

Panel C: Standard Deviation of Geometric and Log Returns 

  Geometric Returns   Log Returns 

Years 10-Year 20-Year   10-Year 20-Year 

1872–2020 0.0497 0.0323  0.0454 0.0293 

1955–2020 0.0506 0.0319  0.0463 0.0287 

1988–2020 0.0549 0.0118  0.0505 0.0109 

            

This table presents summary statistics for stock returns over the entire sample period and sub-periods. 

In Panel A, we present the mean, standard deviation, skewness, and kurtosis of annual stock market 

returns. Stock market returns are simple returns, including dividends, of the S&P 500. Panel B (Panel 

C) shows the mean (standard deviation) of geometric and log returns for 10-year and 20-year intervals 

rolling forward one year at a time. 
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Table 2 

10-Year Forecasts 

  1891–2020   1955–2020   1988–2020 

  MAE MAE Diff OOS-R2   MAE MAE Diff OOS-R2   MAE MAE Diff OOS-R2 

[1] Historical Mean 0.0416 0.0000 0.00%  0.0406 0.0000 0.00%  0.0403 0.0000 0.00% 

            

Panel A: Yield Alone, YLDi 

[2] YLDDiv 0.0445 0.0026 −11.54%  0.0428 0.0022 −4.83%  0.0428 0.0026 −4.20% 

[3] YLDTtl 0.0411 −0.0008 3.99%*  0.0383 −0.0023 13.65%**  0.0375 −0.0028 16.71%* 

[4] YLDNTtl 0.0384 −0.0075** 51.45%**  0.0317 −0.0089*** 39.31%***  0.0276 −0.0127 53.82%** 

[5] YLDCATY 0.0413 −0.0006 1.15%  0.0381 −0.0024 9.05%*  0.0363 −0.0040 16.31% 

            

Panel B: Gordon, GORi,j = YLDi + gj 

[6] GORDiv,E = YLDDiv + gE 0.0415 0.0000 4.28%*  0.0413 0.0007 0.43%  0.0429 0.0026 −2.12% 

[7] GORDiv,Div = YLDDiv + gDiv 0.0424 0.0008 2.55%*  0.0430 0.0024 −5.84%  0.0444 0.0041 −4.98% 

[8] GORTtl,Ttl = YLDTtl + gTtl 0.0414 −0.0002 5.83%**  0.0397 −0.0009 6.67%*  0.0383 −0.0020 13.22% 

[9] GORNTtl,Ttl = YLDNTtl + gTtl 0.0479 0.0021 12.25%*  0.0453 0.0047 −19.66%  0.0396 −0.0007 8.31%* 

[10] GORCATY,CATY = YLDCATY + gCATY 0.0433 0.0017 −3.13%  0.0417 0.0011 −1.17%  0.0390 −0.0013 13.54% 

            

Panel C: Valuation Alone, ΔVk 

[11] VTRCAPE 0.0375 −0.0045* 20.35%***  0.0347 −0.0059 30.31%***  0.0492 0.0089 −9.73%* 

[12] VWPC 0.0210 −0.0235*** 75.64%***  0.0220 −0.0185*** 69.95%***  0.0255 −0.0148*** 63.53%*** 

[13] VBUF 0.0506 0.0043 0.38%***  0.0504 0.0098 −25.42%**  0.0530 0.0127 −33.61% 

[14] VCON − − −  0.0607 0.0166 −92.32%  0.0560 0.0157 −85.74% 

[15] VEW 0.0275 −0.0144*** 55.38%***  0.0278 −0.0127*** 46.22%***  0.0301 −0.0102* 37.20%* 

[16] VIVW 0.0314 −0.0105*** 40.94%***  0.0298 −0.0107*** 42.64%***  0.0359 −0.0044 26.15%* 

[17] VGR 0.0248 −0.0172*** 62.56%***  0.0297 −0.0109** 42.69%***  0.0391 −0.0012 16.97%* 

[18] VBIC 0.0320 −0.0100*** 36.96%***  0.0238 −0.0167*** 66.93%***  0.0255 −0.0147*** 63.52%*** 

            

Panel D: Three Components, GORDiv,Div + ΔVk 

[19] GORDiv,Div + VTRCAPE  0.0352 −0.0068** 30.51%***  0.0298 −0.0108** 48.06%***  0.0395 −0.0008 24.21%** 

[20] GORDiv,Div + VWPC 0.0246 −0.0199*** 61.71%***  0.0202 −0.0204*** 72.68%***  0.0265 −0.0138** 60.93%*** 
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[21] GORDiv,Div + VBUF 0.0475 0.0011 10.21%***  0.0477 0.0072 −11.55%**  0.0508 0.0105 −20.64%* 

[22] GORDiv,Div + VCON − − −  0.0469 0.0028 −37.70%  0.0427 0.0024 −31.53% 

[23] (GORDiv,Div + Vk) EW 0.0273 −0.0146*** 57.70%***  0.0268 −0.0137*** 52.30%***  0.0310 −0.0093* 39.71%** 

[24] (GORDiv,Div + Vk) IVW 0.0285 −0.0134*** 52.45%***  0.0264 −0.0141*** 52.37%***  0.0307 −0.0096** 38.94%** 

[25] (GORDiv,Div + Vk) GR 0.0255 −0.0165*** 55.77%***  0.0243 −0.0163*** 53.30%***  0.0312 −0.0091* 36.06%** 

[26] (GORDiv,Div + Vk) BIC 0.0336 −0.0083*** 34.14%***  0.0268 −0.0138*** 56.06%***  0.0324 −0.0079 41.33%** 

                        

Table 2 reports results for 10-year forecasts over the entire sample period, as well as half and quarter sub-periods. MAE is the mean absolute difference between the 

forecast and actual returns. MAE Diff is the difference in MAEs between each prediction model and the historical mean model. We measure the statistical significance 

of MAE Diff using the moving block bootstrap method, which accounts for autocorrelation in the time series. For each prediction model, we generate 1000 bootstrap 

resamples and report statistical significance based on the one-sided bootstrap p-value. We also use the moving block bootstrap method in determining the statistical 

significance of the differences in MAEs across our prediction models. MAEs in bold are MAEs of Tier 1 models with the lowest MAEs. ***, **, and * indicate the 

significance levels of 1%, 5%, and 10%, respectively. 
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Table 3 

20-Year Forecasts 

  1891–2020   1955–2020   1988–2020 

  MAE MAE Diff OOS-R2   MAE MAE Diff OOS-R2   MAE MAE Diff OOS-R2 

[1] Historical Mean 0.0282 0.0000 0.00%  0.0256 0.0000 0.00%  0.0129 0.0000 0.00% 

            

Panel A: Yield Alone, YLDi 

[2] YLDDiv 0.0291 −0.0014 12.00%***  0.0251 −0.0005 7.01%*  0.0084 −0.0045** 56.96%** 

[3] YLDTtl 0.0275 −0.0029* 17.63%***  0.0246 −0.0010 9.84%**  0.0071 −0.0058** 66.45%** 

[4] YLDNTtl − − −  0.0182 −0.0073** 49.69%***  0.0126 −0.0003 −1.49%** 

[5] YLDCATY 0.0285 −0.0019* 12.06%***  0.0252 −0.0004 5.87%*  0.0102 −0.0027*** 38.26%** 

            

Panel B: Gordon, GORi,j = YLDi + gj 

[6] GORDiv,E = YLDDiv + gE 0.0320 0.0038 −13.79%  0.0311 0.0055 −19.79%  0.0138 0.0009 5.40%** 

[7] GORDiv,Div = YLDDiv + gDiv 0.0326 0.0044 −14.89%  0.0335 0.0080 −35.78%  0.0166 0.0037 −26.05%** 

[8] GORTtl,Ttl = YLDTtl + gTtl 0.0317 0.0035 −13.48%  0.0314 0.0059 −26.57%  0.0108 −0.0021 36.82%** 

[9] GORNTtl,Ttl = YLDNTtl + gTtl 0.0468 0.0122 −38.06%  0.0446 0.0191 −111.64%  0.0293 0.0164 −292.82%** 

[10] GORCATY,CATY = YLDCATY + gCATY 0.0338 0.0056 −27.68%  0.0335 0.0080 −45.88%  0.0118 −0.0011 25.30%** 

            

Panel C: Valuation Alone, ΔVk 

[11] VTRCAPE 0.0257 −0.0048*** 31.64%***  0.0213 −0.0042* 40.58%***  0.0167 0.0037 −76.68%** 

[12] VWPC 0.0262 −0.0062*** 38.25%***  0.0178 −0.0077** 57.51%***  0.0087 −0.0043 54.68%** 

[13] VBUF 0.0227 −0.0026 27.00%***  0.0228 −0.0028 27.39%***  0.0066 −0.0064** 73.57%** 

[14] VCON − − −  − − −  0.0316 0.0154 −202.83% 

[15] VEW 0.0249 −0.0055*** 34.95%***  0.0193 −0.0063** 47.21%***  0.0075 −0.0055** 69.61%** 

[16] VIVW 0.0249 −0.0055*** 35.39%***  0.0192 −0.0063** 47.97%***  0.0077 −0.0052** 61.41%** 

[17] VGR 0.0271 −0.0033* 27.52%***  0.0236 −0.0019 32.53%***  0.0207 0.0077 −107.91% 

[18] VBIC 0.0257 −0.0048*** 31.64%***  0.0213 −0.0042* 40.58%***  0.0167 0.0037 −76.68%** 

            

Panel D: Three Components, GORDiv,Div + ΔVk 

[19] GORDiv,Div + VTRCAPE  0.0248 −0.0056* 37.23%***  0.0183 −0.0073*** 51.45%***  0.0086 −0.0043* 57.05%* 

[20] GORDiv,Div + VWPC 0.0271 −0.0053** 25.69%***  0.0164 −0.0092** 63.81%***  0.0103 −0.0026 38.19%* 
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[21] GORDiv,Div + VBUF 0.0205 −0.0048 41.91%**  0.0203 −0.0052 43.33%**  0.0076 −0.0053* 66.95%** 

[22] GORDiv,Div + VCON − − −  − − −  0.0302 0.0140 −179.67% 

[23] (GORDiv,Div + Vk) EW 0.0257 −0.0047 34.22%***  0.0187 −0.0069* 53.47%***  0.0111 −0.0018 43.29%* 

[24] (GORDiv,Div + Vk) IVW 0.0266 −0.0038 28.48%***  0.0193 −0.0063* 51.33%***  0.0130 0.0001 22.41%* 

[25] (GORDiv,Div + Vk) GR 0.0287 −0.0017 16.84%***  0.0216 −0.0040 45.53%***  0.0260 0.0131 −193.01% 

[26] (GORDiv,Div + Vk) BIC 0.0248 −0.0056* 37.23%***  0.0183 −0.0073*** 51.45%***  0.0086 −0.0043 57.05%* 

                        

Table 3 reports results for 20-year forecasts over the entire sample period, as well as half and quarter sub-periods. MAE is the mean absolute difference between the 

forecast and actual returns. MAE Diff is the difference in MAEs between each prediction model and the historical mean model. We measure the statistical significance 

of MAE Diff using the moving block bootstrap method, which accounts for autocorrelation in the time series. For each prediction model, we generate 1000 bootstrap 

resamples and report statistical significance based on the one-sided bootstrap p-value. We also use the moving block bootstrap method in determining the statistical 

significance of the differences in MAEs across our prediction models. MAEs in bold are MAEs of Tier 1 models with the lowest MAEs. ***, **, and * indicate the 

significance levels of 1%, 5%, and 10%, respectively. 
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Table 4 

MAEs in Different Market States 

  10-Year Forecasts   20-Year Forecasts 

  Return Volatility Amihud Recession   Return Volatility Amihud Recession 

Panel A: Yield Alone, YLDi 

YLDDiv 0.3597*** −0.1742** −0.128 −0.0264  0.6678*** −0.3508*** 0.1513 −0.0328 

YLDTtl 0.3453*** −0.1515** −0.0523 −0.0090  0.6543*** −0.3529*** 0.1362 −0.0122 

YLDNTtl 0.3681*** −0.2419*** 1.9298*** 0.0352  0.4211*** −0.4575*** −0.3971 −0.0571 

YLDCATY 0.3455*** −0.1523* −0.0512 0.0150  0.6620*** −0.3511*** 0.1448 −0.0387 

          

Panel B: Gordon, GORi,j = YLDi + gj 

GORDiv,E = YLDDiv + gE 0.3418*** −0.1640* −0.0834 −0.0218  0.6437*** −0.3049*** 0.1918 −0.0155 

GORDiv,Div = YLDDiv + gDiv 0.3632*** −0.1739** −0.1129 −0.0234  0.6604*** −0.3530*** 0.0797 −0.0397 

GORTtl,Ttl = YLDTtl + gTtl 0.3656*** −0.1695** −0.0764 −0.0070  0.6964*** −0.4114*** 0.0489 −0.0186 

GORNTtl,Ttl = YLDNTtl + gTtl 0.5573*** −0.3121*** −0.2384 −0.0657*  0.6105*** −0.4293*** −0.0477 −0.0434 

GORCATY,CATY = YLDCATY + gCATY 0.3701*** −0.1761** −0.0608 −0.0041  0.7309*** −0.4088*** 0.0912 −0.0242 

          

Panel C: Valuation Alone, ΔVk 

VTRCAPE 0.2608*** −0.0962* −0.1335 −0.0469  0.5284*** −0.2817*** 0.0916 −0.0303 

VWPC −0.0320 −0.0158 −0.0978 −0.0156  0.4760*** −0.2117*** 0.2646* 0.0305 

VBUF 0.3612*** −0.3817*** −0.0165 −0.1594***  0.5898*** −0.6623*** 0.0737 −0.0629 

VCON 0.2255 −0.192 9.2521* 0.0144  0.3495 0.7750 11.9036 −1.8281*** 

VEW 0.2579*** −0.1236* −0.1134 −0.0443  0.5595*** −0.2779*** 0.1907 0.0004 

VIVW 0.2120** −0.0862 −0.1177 −0.0276  0.5264*** −0.2447*** 0.2376* 0.0164 

VGR 0.0818 −0.0618 −0.2222** −0.0676*  0.5385*** −0.2826*** 0.0425 −0.0619 

VBIC 0.2016** −0.0721 0.0797 0.0179  0.5284*** −0.2817*** 0.0916 −0.0303 

          

Panel D: Three Components, GORDiv,Div + ΔVk 

GORDiv,Div + VTRCAPE  0.1708 −0.0071 0.0942 0.0099  0.3774*** −0.1098 0.3130*** 0.0801* 

GORDiv,Div + VWPC −0.0480 0.0628 0.0246 0.0190  0.2944** −0.0699 0.2759** 0.1105*** 

GORDiv,Div + VBUF 0.2814*** −0.3210*** 0.2089 −0.1498***  0.4500*** −0.5137*** 0.3743 0.0286 

GORDiv,Div + VCON 0.2190 −0.1949 8.7832* 0.0154  0.6304** 1.2579** 19.0762** −1.2821** 
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(GORDiv,Div + Vk) EW 0.1321 −0.0210 0.0317 −0.0058  0.3410*** −0.0991 0.2567** 0.0864** 

(GORDiv,Div + Vk) IVW 0.1110 −0.0005 0.0824 0.0140  0.3450*** −0.1019 0.2333** 0.0765** 

(GORDiv,Div + Vk) GR 0.0475 0.0087 −0.0335 −0.0157  0.2496** −0.0397 0.1681 0.0543 

(GORDiv,Div + Vk) BIC 0.1714 −0.0135 0.1521 0.0244  0.3774*** −0.1098 0.3130*** 0.0801* 

                    

In Table 4, we report the MAEs in different market states. For each prediction model, we run the following time-series regression with Newey–West (1987) standard 

errors: MAEi,t = αi + βi MKT_STATE + εi,t, where MAEi is the 10- or 20-year mean absolute errors for prediction model i, and MKT_STATE is one of our four market 

state proxies, calculated over the same 10- or 20-year period as MAEi. The four market state proxies include market return, market volatility, market Amihud (2002) 

ratio, and market recession. Market return and the Amihud (2002) ratio are the average annual market return and the average annual value-weighted stock Amihud 

(2002) ratio, respectively. Market volatility is the standard deviation of annual returns over the same period as MAEi. The market recession proxy is determined by 

calculating the proportion of months (within a 10- or 20-year period) that fall within recessionary phases of the NBER business cycle. ***, **, and * indicate the 

significance levels of 1%, 5%, and 10%, respectively. 
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Table 5 

Asset Allocation 10-Year Forecasts 

  1891–2020   1955–2020   1988–2020 

  VaR Alpha Sharpe   VaR Alpha Sharpe   VaR Alpha Sharpe 

[1] Historical Mean −0.1621 0.0027 0.1933  −0.1912 0.0060 0.2618  −0.1912 0.0181 0.3181 

            

Panel A: Yield Alone, YLDi 

[2] YLDDiv −0.0695*** 0.0194*** 0.3543**  −0.0695*** 0.0173* 0.3116  −0.0552* 0.0332* 0.4747 

[3] YLDTtl −0.1183** 0.0073 0.2457  −0.0838*** 0.0143 0.3043  −0.0397* 0.0288 0.4494 

[4] YLDNTtl −0.0869 0.0096 0.3521  −0.1449 0.0128 0.2829  −0.0781 0.0273 0.3726 

[5] YLDCATY −0.1128*** 0.0050* 0.2357  −0.1128*** 0.0125* 0.3031  −0.0368** 0.0252* 0.4439* 

            

Panel B: Gordon, GORi,j = YLDi + gj 

[6] GORDiv,E = YLDDiv + gE −0.0828*** 0.0102** 0.2618*  −0.0882*** 0.0195* 0.3228  −0.0373* 0.0423** 0.5045 

[7] GORDiv,Div = YLDDiv + gDiv −0.0711*** 0.0114* 0.2691*  −0.0752*** 0.0227** 0.3489  −0.0477* 0.0469** 0.5500 

[8] GORTtl,Ttl = YLDTtl + gTtl −0.0862*** 0.0104*** 0.2862**  −0.0748*** 0.0152* 0.3192  −0.0319** 0.0286 0.4617 

[9] GORNTtl,Ttl = YLDNTtl + gTtl −0.0826 0.0093 0.2541  −0.0781*** 0.0144 0.2723  −0.0781* 0.0288 0.4005 

[10] GORCATY,CATY = YLDCATY + gCATY −0.0660*** 0.0104** 0.2721*  −0.0698*** 0.0210** 0.3630  −0.0319** 0.0411** 0.5675 

            

Panel C: Valuation Alone, ΔVk 

[11] VTRCAPE −0.0789*** 0.0126* 0.2751  −0.0947*** 0.0150 0.2759  −0.0781* 0.0358 0.4278 

[12] VWPC −0.1314 0.0167 0.3198  −0.1107** 0.0269 0.3862  −0.0319** 0.0613** 0.7585** 

[13] VBUF −0.0688*** 0.0332*** 0.4393  −0.0688*** 0.0284** 0.3368  −0.0781* 0.0481** 0.4366 

[14] VCON − − −  −0.2045 −0.0014 0.2810  −0.2045 0.0037 0.2756 

[15] VEW −0.1046* 0.0124* 0.2738  −0.0819*** 0.0239** 0.3643  −0.0120** 0.0519** 0.6627* 

[16] VIVW −0.1183 0.0054 0.2359  −0.1015 0.0058 0.2441  −0.0781 0.0117 0.3000 

[17] VGR −0.1183 0.0108 0.2620  −0.1107** 0.0229 0.3494  −0.0426* 0.0527** 0.6396 

[18] VBIC −0.0789*** 0.0183** 0.3306**  −0.0797*** 0.0260 0.3833  −0.0319** 0.0613*** 0.7585* 

            

Panel D: Three Components, GORDiv,Div + ΔVk 

[19] GORDiv,Div + VTRCAPE  −0.0781** 0.0171** 0.3108*  −0.0781*** 0.0182 0.3057  −0.0414* 0.0449** 0.5311 

[20] GORDiv,Div + VWPC −0.1076 0.0195* 0.3285  −0.1107** 0.0264 0.3755  −0.0319** 0.0609** 0.7211* 
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[21] GORDiv,Div + VBUF −0.0624*** 0.0357*** 0.4549  −0.0743*** 0.0300** 0.3477  −0.0781* 0.0474** 0.4290 

[22] GORDiv,Div + VCON − − −  −0.1100 0.0119 0.3701  −0.1100 0.0165 0.3639 

[23] (GORDiv,Div + Vk) EW −0.0810** 0.0183** 0.3201**  −0.0781*** 0.0207 0.3326  −0.0319** 0.0500** 0.6147* 

[24] (GORDiv,Div + Vk) IVW −0.1046* 0.0145** 0.2998*  −0.0892*** 0.0133 0.2933  −0.0781** 0.0311 0.4529 

[25] (GORDiv,Div + Vk) GR −0.1107 0.0137* 0.2731  −0.1107** 0.0257 0.3699  −0.0319** 0.0611** 0.7231* 

[26] (GORDiv,Div + Vk) BIC −0.0781** 0.0199** 0.3344**  −0.0781*** 0.0236 0.3534  −0.0319** 0.0583** 0.6885* 

                        

In Table 5, we compare different models from an asset allocation perspective for 10-year forecasts. We allocate the portfolio between stocks and bonds using data on 

the S&P 500 Index and the US 10-year government bond total return index. We employ the mean–variance approach and consider optimal portfolio weights as the asset 

weights that maximize the portfolio Sharpe ratio. Following the derivation in Smith (2019), we calculate optimal weights and rebalance the portfolio annually, based 

on the expected Sharpe ratios of the two assets, their historical standard deviations, and the historical correlation between them. To calculate the expected Sharpe ratio, 

[E(R) – Rf]/σ, for the S&P 500 (which serves as one input for determining optimal portfolio weights), we use our OOS S&P 500 return forecasts from each of our 

prediction models, historical risk-free rates sourced from the updated Goyal and Welch (2008) dataset, and historical standard deviations of S&P 500 returns. 

Accordingly, optimal weights and realized portfolio returns differ across our models. We then generate three performance metrics for realized portfolio returns: 5% 

value at risk (VaR), ex post alpha (Alpha), and ex post Sharpe ratio (Sharpe). We employ the aforementioned moving block bootstrap approach to bootstrap realized 

portfolio returns and determine whether realized VaR of portfolios constructed based on each of our prediction models is significantly lower than that based on the 

historical mean model. Similarly, we also examine whether realized alpha and Sharpe ratio of portfolios based on our prediction models are significantly higher than 

those based on the historical mean model. ***, **, and * indicate the significance levels of 1%, 5%, and 10%, respectively. 
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Table 6 

Asset Allocation 20-Year Forecasts 

  1891–2020   1955–2020   1988–2020 

  VaR Alpha Sharpe   VaR Alpha Sharpe   VaR Alpha Sharpe 

[1] Historical Mean −0.1344 −0.0021 0.2040  −0.1053 0.0025 0.3025  −0.1053 −0.0009 0.5063 

            

Panel A: Yield Alone, YLDi 

[2] YLDDiv −0.1046 0.0039 0.2581  −0.0867*** 0.0032 0.3018  −0.0722** 0.0047 0.5353 

[3] YLDTtl −0.1087 0.0043 0.2608  −0.0846*** 0.0031 0.2956  −0.0674** 0.0051 0.5337 

[4] YLDNTtl − − −  −0.0999 0.0101 0.3348  −0.0683 0.0372 0.6400 

[5] YLDCATY −0.1046 0.0032 0.2517  −0.0912*** 0.0025 0.2980  −0.0912* 0.0006 0.5121 

            

Panel B: Gordon, GORi,j = YLDi + gj 

[6] GORDiv,E = YLDDiv + gE −0.0774*** 0.0052 0.2495  −0.0774** 0.0076 0.3046  −0.0373 0.0202 0.5365 

[7] GORDiv,Div = YLDDiv + gDiv −0.0752*** 0.0058 0.2504  −0.0752** 0.0102 0.3161  −0.0493 0.0252 0.5309 

[8] GORTtl,Ttl = YLDTtl + gTtl −0.0748** 0.0082** 0.2794*  −0.0690*** 0.0085 0.3137  −0.0319* 0.0160 0.5323 

[9] GORNTtl,Ttl = YLDNTtl + gTtl −0.0826* 0.0052 0.2471  −0.0656** 0.0088 0.2625  −0.0781 0.0242 0.4561 

[10] GORCATY,CATY = YLDCATY + gCATY −0.0698*** 0.0061* 0.2529  −0.0698*** 0.0115 0.3311  −0.0319* 0.0234 0.5558 

            

Panel C: Valuation Alone, ΔVk 

[11] VTRCAPE −0.1046 0.0058 0.2623  −0.0846** 0.0060 0.2957  −0.0781 0.0284 0.5233 

[12] VWPC −0.1107 0.0203*** 0.4150***  −0.1107 0.0078 0.3354  −0.0359*** 0.0188 0.6061 

[13] VBUF −0.1083 0.0079 0.3544  −0.1083 0.0082 0.3301  −0.0319** 0.0264 0.6211 

[14] VCON − − −  − − −  −0.0257** 0.0341** 0.7264** 

[15] VEW −0.1112 0.0095 0.2980  −0.0923*** 0.0108 0.3490  −0.0319*** 0.0372 0.7081 

[16] VIVW −0.1183 0.0096 0.2963  −0.0977*** 0.0106 0.3414  −0.0319** 0.0396 0.6799 

[17] VGR −0.1046 0.0093 0.2986  −0.0869*** 0.0119** 0.3665**  −0.0319*** 0.0333* 0.7427 

[18] VBIC −0.1046 0.0058 0.2623  −0.0846*** 0.0060 0.2957  −0.0781 0.0284 0.5233 

            

Panel D: Three Components, GORi,j + ΔVk 

[19] GORDiv,Div + VTRCAPE  −0.1046 0.0184* 0.3669*  −0.0920** 0.0059 0.3123  −0.0319* 0.0380 0.6897 

[20] GORDiv,Div + VWPC −0.1046 0.0221* 0.4272**  −0.0981** 0.0057 0.3194  −0.0319*** 0.0286 0.6549 
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[21] GORDiv,Div + VBUF −0.0806** 0.0056 0.3460  −0.0806** 0.0052 0.3145  −0.0319* 0.0259 0.6515 

[22] GORDiv,Div + VCON − − −  − − −  −0.0093** 0.0405* 0.7753* 

[23] (GORDiv,Div + Vk) EW −0.1046 0.0193* 0.3761**  −0.0893** 0.0066 0.3271  −0.0319*** 0.0334 0.7145 

[24] (GORDiv,Div + Vk) IVW −0.1046 0.0193* 0.3760**  −0.0869** 0.0067 0.3275  −0.0319*** 0.0339 0.7158 

[25] (GORDiv,Div + Vk) GR −0.1046 0.0197* 0.3798**  −0.0981** 0.0074 0.3390  −0.0319*** 0.0300* 0.7226 

[26] (GORDiv,Div + Vk) BIC −0.1046 0.0184* 0.3669*  −0.0920** 0.0059 0.3123  −0.0319* 0.0380 0.6897 

                        

In Table 6, we compare different models from an asset allocation perspective for 20-year forecasts. We allocate the portfolio between stocks and bonds using data on 

the S&P 500 Index and the US 10-year government bond total return index. We employ the mean–variance approach and consider optimal portfolio weights as the asset 

weights that maximize the portfolio Sharpe ratio. Following the derivation in Smith (2019), we calculate optimal weights and rebalance the portfolio annually, based 

on the expected Sharpe ratios of the two assets, their historical standard deviations, and the historical correlation between them. To calculate the expected Sharpe ratio, 

[E(R) – Rf]/σ, for the S&P 500 (which serves as one input for determining optimal portfolio weights), we use our OOS S&P 500 return forecasts from each of our 

prediction models, historical risk-free rates sourced from the updated Goyal and Welch (2008) dataset, and historical standard deviations of S&P 500 returns. 

Accordingly, optimal weights and realized portfolio returns differ across our models. We then generate three performance metrics for realized portfolio returns: 5% 

value at risk (VaR), ex post alpha (Alpha), and ex post Sharpe ratio (Sharpe). We employ the aforementioned moving block bootstrap approach to bootstrap realized 

portfolio returns and determine whether realized VaR of portfolios constructed based on each of our prediction models is significantly lower than that based on the 

historical mean model. Similarly, we also examine whether realized alpha and Sharpe ratio of portfolios based on our prediction models are significantly higher than 

those based on the historical mean model. ***, **, and * indicate the significance levels of 1%, 5%, and 10%, respectively. 
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Appendix 1 

Predictor Description 
Model Description 

Historical Mean Historical average return on the S&P 500 Index is used as the forecast. 

YLDDiv We use the log dividend yield (e.g., Ferreira and Santa-Clara, 2011; Rapach, Ringgenberg, and Zhou, 2016) as the predictor to compute a 

standard predictive regression forecast. Dividend yield in year t is calculated as dividend in year t divided by the S&P 500 Index value at 

the end of year t−1. 

YLDTtl We use the log total yield as the predictor to compute a standard predictive regression forecast. Total yield is the dividend yield plus the 

buyback yield as per Straehl and Ibbotson (2017). 

YLDNTtl We use the log net total yield as the predictor to compute a standard predictive regression forecast. Net total yield is the dividend yield 

less net issuance as per Straehl and Ibbotson (2017). 

YLDCATY We use the cyclically adjusted total yield (CATY) as the predictor to compute a standard predictive regression forecast. CATY is computed 

as per Straehl and Ibbotson (2017). 

GORDiv,E = YLDDiv + gE The Gordon growth model with log dividend yield and average historical growth in earnings is used to compute a return forecast. 

GORDiv,Div = YLDDiv + gDiv The Gordon growth model with log dividend yield and average historical growth in dividends is used to compute a return forecast. 

GORTtl,Ttl = YLDTtl + gTtl The Gordon growth model with log total yield and average historical total yield growth is used to compute a return forecast. To calculate 

average historical total yield growth, we first multiply yearly total yield in year t by the S&P 500 Index value at the end of year t−1, and 

then we calculate the average historical growth rate in the resulting time series. 

. 

GORNTtl,Ttl = YLDNTtl + gTtl The Gordon growth model with log net total yield and average historical total yield growth is used to compute a return forecast. 

GORCATY,CATY = YLDCATY + gCATY The Gordon growth model with CATY and average historical CATY growth is used to compute a return forecast. To calculate average 

historical CATY growth, we first multiply yearly CATY in year t by the S&P 500 Index value at the end of year t−1, and then we calculate 

the average historical growth rate in the resulting time series. 

VTRCAPE We use the total return cyclically adjusted price-to-earnings ratio (TRCAPE) as the predictor to compute a standard predictive regression 

forecast. The TRCAPE data are sourced from the Shiller website: http://www.econ.yale.edu/~shiller/data.htm 

VWPC We use the wealth portfolio composition (WPC) indicator as the predictor to compute a standard predictive regression forecast. The WPC 

indicator is calculated as per Appendix A of Rintamaki (2023) with data collected from the Jordà-Schularick-Taylor Macrohistory 

Database. 

VBUF We use the Buffett indicator, the equity market capitalization scaled by gross domestic product, as the predictor to compute a standard 

predictive regression forecast. 

VCON We use the detrended cyclical consumption as the predictor to compute a standard predictive regression forecast (e.g., Atanasov, Møller, 

and Priestley, 2020). We detrend consumption data in quarter q as per Eq. (2) of Atanasov, Møller, and Priestley (2020), and we use only 

the data available up to quarter q to avoid look-forward bias from the detrending process. 

VEW We calculate the simple average of the forecasts of ΔVTRCAPE, ΔVWPC, ΔVBUF, and ΔVCON in each year and form a composite forecast. 
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VIVW We calculate the inverse variance-weighted average of the forecasts of ΔVTRCAPE, ΔVWPC, ΔVBUF, and ΔVCON in each year (e.g., Bates 

and Granger, 1969) and form a composite forecast. 

VGR We combine the forecasts of ΔVTRCAPE, ΔVWPC, ΔVBUF, and ΔVCON in each year using the Granger and Ramanathan (1984) constrained 

regression approach. To form the composite forecast, we regress actual returns on the forecasts of ΔVTRCAPE, ΔVWPC, ΔVBUF, and ΔVCON 

with no constant, subject to the constraints that all regression beta coefficients are non-negative and the sum of beta coefficients is equal 

to 1. Next, the beta coefficients are used as the weights assigned to the forecasts of ΔVTRCAPE, ΔVWPC, ΔVBUF, and ΔVCON. 

VBIC We use the Bayesian model averaging method (e.g., Min and Zellner, 1993) to combine the forecasts of ΔVTRCAPE, ΔVWPC, ΔVBUF, and 

ΔVCON, and form a composite forecast. 

GORDiv,Div + VTRCAPE  The return forecast is the sum of the Gordon growth model (with dividend yield and dividend growth) forecast and expected change in 

valuations. We use TRCAPE as the predictor to forecast the OOS change in valuations. The TRCAPE data are sourced from the Shiller 

website: http://www.econ.yale.edu/~shiller/data.htm 

GORDiv,Div + VWPC The return forecast is the sum of the Gordon growth model (with dividend yield and dividend growth) forecast and expected change in 

valuations. We use WPC as the predictor to forecast the OOS change in valuations. The WPC indicator is calculated as per Appendix A 

of Rintamaki (2023). 

GORDiv,Div + VBUF The return forecast is the sum of the Gordon growth model (with dividend yield and dividend growth) and expected change in valuations. 

We use the Buffett indicator, the equity market capitalization scaled by gross domestic product, as the predictor to forecast the OOS 

change in valuations. 

GORDiv,Div + VCON The return forecast is the sum of the Gordon growth model (with dividend yield and dividend growth) and expected change in valuations. 

We use the detrended cyclical consumption (e.g., Atanasov, Møller, and Priestley, 2020) as the predictor to forecast the OOS change in 

valuations. We detrend consumption data in quarter q as per Eq. (2) of Atanasov, Møller, and Priestley (2020), and we use only the data 

available up to quarter q to avoid look-forward bias from the detrending process. 

(GORDiv,Div + Vk) EW We calculate the simple average of the forecasts of (GORDiv,Div + ΔVTRCAPE), (GORDiv,Div + ΔVWPC), (GORDiv,Div + ΔVBUF) and (GORDiv,Div 
+ ΔVCON) in each year and form a composite forecast. 

(GORDiv,Div + Vk) IVW We calculate the inverse variance-weighted average of the forecasts of (GORDiv,Div + ΔVTRCAPE), (GORDiv,Div + ΔVWPC), (GORDiv,Div + 
ΔVBUF) and (GORDiv,Div + ΔVCON) in each year and form a composite forecast. 

(GORDiv,Div + Vk) GR We combine the forecasts of (GORDiv,Div + ΔVTRCAPE), (GORDiv,Div + ΔVWPC), (GORDiv,Div + ΔVBUF) and (GORDiv,Div + ΔVCON) in each year 

using the Granger and Ramanathan (1984) constrained regression approach. To calculate the composite forecast, we regress actual returns 

on the forecasts of (GORDiv,Div + ΔVTRCAPE), (GORDiv,Div + ΔVWPC), (GORDiv,Div + ΔVBUF) and (GORDiv,Div + ΔVCON) with no constant, 

subject to the constraints that all regression beta coefficients are non-negative, and the sum of beta coefficients is equal to 1. Then the beta 

coefficients are used as the weights assigned to the forecasts of (GORDiv,Div + ΔVTRCAPE), (GORDiv,Div + ΔVWPC), (GORDiv,Div + ΔVBUF) and 

(GORDiv,Div + ΔVCON). 

(GORDiv,Div + Vk) BIC We use the Bayesian model averaging method (Min and Zellner, 1993) to combine the forecasts of (GORDiv,Div + ΔVTRCAPE), (GORDiv,Div 
+ ΔVWPC), (GORDiv,Div + ΔVBUF) and (GORDiv,Div + ΔVCON) and form a composite forecast. 

We conduct an ordinary least squares (OLS) out-of-sample (OOS) forecasting approach (e.g., Goyal and Welch, 2008). All OOS forecasts use only the data available 

up to the year in which the forecast is calculated. 
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Appendix 2 

Correlations and MAEs 

    Rule 1 Rule 2 Rule 1 Rule 2 

 Actual Predicted Predicted Absolute Absolute 

Year Return Return Return Error Error 

1 6.00% 8.00% 6.00% 2.00% 0.00% 

2 −8.00% −6.00% −5.00% 2.00% 3.00% 

3 1.00% 3.00% 0.00% 2.00% 1.00% 

4 12.00% 14.00% 12.00% 2.00% 0.00% 

5 8.00% 10.00% 8.00% 2.00% 0.00% 

6 7.00% 9.00% 8.00% 2.00% 1.00% 

      

Pearson Correlation 1.0000 0.9854   

Spearman Correlation 1.0000 0.9786   

Mean Absolute Error     2.00% 0.83% 

     

This table presents the correlations and MAEs of two hypothetical return prediction rules. These rule 

returns demonstrate differences between correlations and MAEs. 
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Appendix 3 

Average MAEs 

  1891–2020 1955–2020 1988–2020 

Panel A: 10-Year Forecasts       

    
Yield Alone 0.0413 0.0377 0.0361 

Gordon 0.0433 0.0422 0.0408 

Valuation Alone 0.0321 0.0349 0.0393 

Three Components 0.0317 0.0311 0.0356 

    
Three Components versus:    

 Diebold–Mariano Statistics 

Yield Alone −4.82*** −3.99*** −0.19 

Gordon −4.90*** −5.34*** −2.11** 

Valuation Alone −0.26 −3.96*** −3.52*** 

    

Panel B: 20-Year Forecasts       

    
Yield Alone 0.0284 0.0233 0.0096 

Gordon 0.0354 0.0348 0.0165 

Valuation Alone 0.0253 0.0208 0.0145 

Three Components 0.0255 0.0190 0.0144 

    
Three Components versus:    

 Diebold–Mariano Statistics 

Yield Alone −0.58 −2.53** 1.75 

Gordon −3.84*** −7.81*** −1.03 

Valuation Alone 0.40 −1.86* 0.15 

        

This table presents the average MAEs for each of the four forecasting frameworks discussed in Section 

2. We also employ the Diebold–Mariano (DM) test to evaluate the statistical differences in MAEs 

between the three-component framework and the other three frameworks. Panel A shows the results for 

10-year forecasts; Panel B shows the results for 20-year forecasts. ***, **, and * indicate the 

significance levels of 1%, 5%, and 10%, respectively. 
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Appendix 4 

MSEs in Different Market States 

  10-Year Forecasts   20-Year Forecasts 

  Return Volatility Amihud Recession   Return Volatility Amihud Recession 

Panel A: Yield Alone, YLDi 

YLDDiv 0.0375*** −0.0168** −0.0115 −0.0031  0.0482*** −0.0259*** 0.0079 −0.0018 

YLDTtl 0.0345*** −0.0136** −0.0053 −0.0003  0.0464*** −0.0258*** 0.0061 −0.0008 

YLDNTtl 0.0355*** −0.0195*** 0.2341*** 0.0045  0.0246*** −0.0270*** −0.0231 −0.0035 

YLDCATY 0.0350*** −0.0140* −0.0036 0.0014  0.0492*** −0.0266*** 0.0074 −0.0020 

          

Panel B: Gordon, GORi,j = YLDi + gj 

GORDiv,E = YLDDiv + gE 0.0345*** −0.0153* −0.0065 −0.0020  0.0508*** −0.0250*** 0.0143 −0.0010 

GORDiv,Div = YLDDiv + gDiv 0.0380*** −0.0169** −0.0089 −0.0023  0.0537*** −0.0294*** 0.0062 −0.0023 

GORTtl,Ttl = YLDTtl + gTtl 0.0372*** −0.0158** −0.0063 −0.0003  0.0552*** −0.0321*** 0.0041 −0.0011 

GORNTtl,Ttl = YLDNTtl + gTtl 0.0576*** −0.0304*** −0.0209 −0.0053  0.0622*** −0.0423*** −0.0037 −0.0037 

GORCATY,CATY = YLDCATY + gCATY 0.0390*** −0.0170** −0.0035 0.0000  0.0613*** −0.0348*** 0.0059 −0.0017 

          

Panel C: Valuation Alone, ΔVk 

VTRCAPE 0.0254*** −0.0083* −0.0081 −0.0035  0.0344*** −0.0180*** 0.0075 −0.0003 

VWPC −0.0011 −0.0010 −0.0048 −0.0010  0.0308*** −0.0132*** 0.0162* 0.0026 

VBUF 0.0371*** −0.0393*** −0.0124 −0.0175***  0.0364*** −0.0401*** −0.0131 −0.0043 

VCON 0.0573 −0.0494 1.5557* −0.0079  0.0173 0.0374 0.5203 −0.0920*** 

VEW 0.0205** −0.0094* −0.0102 −0.0046  0.0362*** −0.0179*** 0.0112 0.0009 

VIVW 0.0186** −0.0072 −0.0090 −0.0031  0.0342*** −0.0158*** 0.0138 0.0017 

VGR 0.0089 −0.0054 −0.0161** −0.0058*  0.0362*** −0.0187*** 0.0055 −0.0016 

VBIC 0.0190** −0.0054 0.0087 0.0021  0.0344*** −0.0180*** 0.0075 −0.0003 

          

Panel D: Three Components, GORDiv,Div + ΔVk 

GORDiv,Div + VTRCAPE  0.0134 0.0020 0.0142 0.0028  0.0237*** −0.0080 0.0175** 0.0050* 

GORDiv,Div + VWPC −0.0027 0.0037 0.0020 0.0013  0.0180** −0.0054 0.0143** 0.0060*** 

GORDiv,Div + VBUF 0.0297*** −0.0327*** 0.0318 −0.0150***  0.0240*** −0.0272*** 0.0134 0.0012 

GORDiv,Div + VCON 0.0487 −0.0419 1.2584 −0.0080  0.0321** 0.0681** 0.9994** −0.0726*** 
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(GORDiv,Div + Vk) EW 0.0102 −0.0009 0.0020 −0.0006  0.0214*** −0.0074 0.0145** 0.0053** 

(GORDiv,Div + Vk) IVW 0.0085 0.0016 0.0071 0.0015  0.0220*** −0.0079 0.0131* 0.0049** 

(GORDiv,Div + Vk) GR 0.0074 −0.0016 −0.0053 −0.0025  0.0171** −0.0044 0.0104 0.0039* 

(GORDiv,Div + Vk) BIC 0.0129 0.0019 0.0178 0.0039  0.0237*** −0.0080 0.0175** 0.0050* 

                    

In Appendix 4, we report the MSEs in different markets states. For each prediction model, we run the following time-series regression with Newey–West (1987) standard 

errors: MSEi,t = αi + βi MKT_STATE + εi,t, where MSEi is the 10- or 20-year mean squared errors for prediction model i, and MKT_STATE is one of our four market 

state proxies, calculated over the same 10- or 20-year period as MSEi. The four market state proxies include market return, market volatility, market Amihud (2002) 

ratio, and market recession. Market return and the Amihud (2002) ratio are the average annual market return and the average annual value-weighted stock Amihud 

(2002) ratio, respectively. Market volatility is the standard deviation of annual returns over the same period as MSEi. The market recession proxy is determined by 

calculating the proportion of months (within a 10- or 20-year period) that fall within recessionary phases of the NBER business cycle. ***, **, and * indicate the 

significance levels of 1%, 5%, and 10%, respectively. 

 

 

 



39 

 

 

Figure 1a: 10-Year Forecasts. This figure plots the annualized 10-year forecasts based on the three-

component approach with equal weights assigned to proxies for ΔV, along with historical mean returns 

and actual annualized 10-year returns. 

 

 

Figure 1b: 20-Year Forecasts. This figure plots the annualized 20-year forecasts based on the three-

component approach with the TRCAPE proxy for ΔV, along with historical mean returns and actual 

annualized 20-year returns. 
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Figure 2a: 10-Year Forecast Errors. This figure plots the forecast errors for 10-year forecasts based 

on the three-component approach with equal weights assigned to proxies for ΔV, along with forecast 

errors for the historical mean model. 

 

 

Figure 2b: 20-Year Forecast Errors. This figure plots the forecast errors for 20-year forecasts based 

on the three-component approach with the TRCAPE proxy for ΔV, along with forecast errors for the 

historical mean model. 
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Figure 3a: 10-Year Absolute Forecast Errors. This figure displays the distributions of absolute 

forecast errors for two models: the three-component model with equal weights assigned to proxies for 

ΔV (depicted in white), and the historical mean model (depicted in dark gray). Areas of overlap between 

the two distributions are shown in light gray. 

 

 

Figure 3b: 20-Year Absolute Forecast Errors. This figure displays the distributions of absolute 

forecast errors for two models: the three-component model with the TRCAPE proxy for ΔV (depicted 

in white), and the historical mean model (depicted in dark gray). Areas of overlap between the two 

distributions are shown in light gray. 
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