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Abstract

We study real options in the labor market for investment managers and show their importance

for the delegated investment management market. We solve and calibrate a dynamic equilibrium

model featuring investment opportunities with differing maturities that interact with managers’

career concerns. Short-term strategies benefit fund managers by accelerating skill revelation, while

the downside is managed by manager exit. In the steady state, a large number of new managers

exploit the value of this call option, driving down their short-term value added in equilibrium.

As in the data, a small number of experienced managers exploit scalable long-term opportunities,

adding substantial value.
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1 Introduction

We combine insights from the real options literature with recent advances in the delegated

investment management literature to illustrate the important interaction between strategic

task choice and employee skill revelation. We solve a dynamic equilibrium model of del-

egated investing featuring investment opportunities with differing maturities that interact

with managers’ career concerns. Because managers can strategically choose the investment

opportunities they pursue, they can affect the speed by which their skill is revealed. Short-

term investment opportunities, by their nature, reveal the skill of the manager more quickly

than long-term investment opportunities do. This gives the manager control over the speed

by which she and investors learn about her skill. Further, the downside risk is managed

through manager exit. This mechanism can help explain an important stylized fact in U.S.

mutual fund data: the simultaneous occurrence of a large number of new managers pur-

suing high turnover strategies with low value added, and a small number of experienced

and skilled managers that exploit scalable long-term investment opportunities and who add

substantial value. As such, while short-termism often results from irrational behavior both

theoretically and empirically, in our model the choice to invest in short-term investment

opportunities results from managers optimally choosing to accelerate skill revelation in a

dynamic equilibrium setting. This mechanism has wider applications in labor and prod-

uct markets. For example, internship programs are popular among new graduates, despite

their lower salaries and less important short-term tasks compared with a full-time job. Also,

companies launch a large amount of new products every year. They initially charge low

prices and spend a lot on these products’ marketing. While many of these products do not

survive, a few generates large long-term value added.

While the theoretical real options literature has made important strides in recent

decades, finding their empirical counterparts has been proven to be more challenging. In

particular, quantifying the value of real options in a learning context is difficult due to mea-

surement problems related to the performance of individual employees (or the quality of a

product), the relevant information set and, as a result, the speed of learning.1 An advantage
1Another paper investigating the real option value from learning is Grenadier and Malenko (2010), which
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of the mutual fund industry is that both the performance of a mutual fund as well as the

amount of capital flowing into or out of it are public information.2 Since this information

is available at different frequencies, we can measure the speed of learning for funds using

high- and low- turnover strategies separately. This allows us to provide direct empirical

evidence to our model’s key mechanism: investing in short-term investment opportunities

accelerates skill revelation. Furthermore, the speed of learning is of great importance to

fund managers, as it takes years or even decades for them to reveal their skill (e.g., Berk

and Green [2004]).

Armed with these insights, we use the mutual fund industry to quantify the value from

a higher speed of learning about employees’ skills: a strategy accelerating the revelation of

an employee’s skill increases her growth potential, while the downside risk is managed by

the possibility to exit. This call-option-like payoff embeds a real growth option. Because

the value of this real growth option is large for new employees, they are willing to accept

a lower current payoff from this strategy. Put differently, the “option to learn” is valuable

for making more informed decisions under imperfect information (Grenadier and Malenko

[2010]). According to our estimates, for a new manager, the present value of this real growth

option from investing in short-term strategies is about $4.9 million each quarter, whereas

the one-period payoff from investing in short- (long-) term strategies is $0.09 ($0.57) million

per quarter. For an average fund manager, the present value of this option is at least $3.5

million.

We analyze a dynamic equilibrium model of multiple fund managers with career con-

cerns.3 Our model builds on that of Berk and Green (2004), but deviates from it by

featuring investment opportunities with different horizons, whose returns are endogenously

shows that the “option to learn” uncertainty over the permanence of past shocks is valuable.
2As shown in the model of Berk and Green (2004), investors learn of a fund manager’ skill from her past

performance. The result of this learning can be measured by the capital flows into and out of the fund,
and the speed of learning can be measured by the sensitivity of capital flows to fund performance (i.e.,
flow-performance sensitivity).

3Our new career incentive is related to but different from existing career incentives of fund managers
studied in the literature (e.g., risk shifting of fund managers documented in Brown, Harlow, and Starks [1996],
Basak, Pavlova, and Shapiro [2007], and Huang, Sialm, and Zhang [2011]; window dressing in Agarwal, Gay,
and Ling [2014]). Sockin and Xiaolan (2022) document that the commonality in compensation incentives
across funds distorts price informativeness, which feeds back into fund manager behavior. To our best
knowledge, Chen, Jiang, and Xiaolan (2023) is the only other paper studying the interaction between funds’
strategies and the speed of skill revelation, where they focus on their marketing strategies.
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determined by competition among managers. The key mechanism we study arises from the

strategic interaction between managers’ career concerns regarding skill revelation and their

investment horizon: investing in short-term investment opportunities allows fund managers

to reveal their skill faster at the cost of lower value added. In our model, fund managers

with a finite lifespan optimally sacrifice short-term profitability to maximize the expected

(lifetime) stream of management fees. In equilibrium, a large number of new and un-

skilled fund managers compete for short-term opportunities to exploit the value of this real

growth option, driving down short-term value added to a level lower than those of long-

term opportunities. A small number of experienced and skilled managers exploit scalable

long-term investment opportunities, adding substantial value. These model predictions are

consistent with three salient empirical regularities left unexplained in the mutual fund liter-

ature.4 First, the majority of funds’ profits come from their long-term holdings as opposed

to short-term trades.5 Second, a small number of large funds with low-turnover strategies

manage the majority of assets, while the industry continuously features a large number of

constantly changing small funds with high-turnover strategies. Finally, older fund managers

have lower fund turnover than newer fund managers on average. In addition, we provide

direct empirical evidence to our model’s new mechanism using funds’ flow-performance sen-

sitivity as a measure of the speed of learning. We find that the flow-performance sensitivity

of high-turnover funds decays faster over time than that of low-turnover funds, and this

decay is faster for the returns in the past quarter/year than for returns in the past three

years.

To formalize the aforementioned ideas, we consider an infinite-horizon, discrete-time

model with a continuum of fund managers, who have access to investment opportunities

that may deliver excess returns (alphas) over the passive benchmark. There are two types of
4The mutual fund literature has made important progress in explaining several stylized facts in mutual

fund data. For example, Berk and Green (2004) use rational learning of fund manager skill to explain
the stylized fact that investors’ capital chase past fund performance. Berk and van Binsbergen (2015)
further distinguish the value added by a fund manager (the product of fund gross alpha and assets under
management) from the net returns shared with fund investors, and they document that funds’ value added,
as a measure of fund skill, is on average positive and persistent over time, whereas net alphas are not.
Because the Berk and Green model is a single-fund model with exogenous investment opportunities it is
unable to address the strategic interactions that we study in this paper.

5As documented in Van Binsbergen, Han, Ruan, and Xing (2022), mutual funds’ holdings longer than a
year make more profits than holdings shorter than a year do in the aggregate.
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investment opportunities: short-term and long-term opportunities. The investment oppor-

tunities can be interpreted as investment strategies that exploit mispricing in the financial

market. For example, investment in those opportunities will deliver alphas over the pas-

sive benchmark when prices converge to their fundamental value. A short-term investment

opportunity converges to the fundamental value more quickly, whereas a long-term invest-

ment opportunity converges more slowly.6 As such, short-term opportunities are much less

affected by limits-to-arbitrage type of concerns compared to long-term opportunities; the

latter may first deviate further from fundamental value before converging (Shleifer and

Vishny [1997]). In summary, our model extends the setting of Berk and Green by intro-

ducing a strategic interaction between career concerns and managers’ investment horizons

among a continuum of fund managers.

There are overlapping generations of fund managers in our economy, who randomly die

in each period. They may also voluntarily exit if the value of continuing operations falls

below the outside option. New managers enter the economy so that the total mass of fund

managers in the economy is constant. Following Berk and Green (2004), we assume that

fund managers’ talents are initially unknown to everyone in the economy. Given the history

of performance, investors and fund managers update their beliefs about fund managers’

talents. Under updated beliefs, investors’ money flows to and from each fund until its

expected net alpha becomes zero. Therefore, fund sizes are tied to perceived talents of

managers under the assumption of rational expectations.

As mentioned above, fund managers can choose to either exit or continue fund operation

in each period. In case they continue, they can choose to invest in either a short-term or

a long-term investment opportunity. Fund managers maximize their expected utility of

consuming the stream of fund management fees after costs. By investing in short-term

opportunities, they can accelerate the revelation of their talents, which are either good or

bad with the same probability conditioning on the current information set. The value of

a higher learning speed of short-term investment arises from the option to exit, and the
6Because funds can immediately deploy their capital from realized existing investment to a new oppor-

tunity, short-term investment is equivalent to high-turnover strategy in our model. Likewise, long-term
investment is equivalent to low-turnover strategy.
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fact that their lifespan is finite. Fund managers can exploit the possibility of higher fund

growth in case of good performance before their career is over, but can still limit the adverse

impact of bad performance by choosing to exit from the industry. This value from a higher

learning speed (i.e., the value of the real growth option) is larger if managers are new,

because there is little known about their talents. This implies that new fund managers are

willing to accept lower value added of short-term opportunities relative to those of long-

term opportunities due to the extra option value of the short-term opportunities. On the

margin, the total value added (i.e., the sum of value added and the option value) is equalized

between short-term and long-term opportunities.

We show that fund managers choose to exit when their perceived talents are sufficiently

low, and older fund managers with the same perceived talents are more likely to exit than

new managers because they have a smaller growth potential. As a consequence, the station-

ary distribution of surviving fund managers’ talents becomes on average higher than the

initial distribution of talents. As fund managers become older or perceived as more skilled

by investors, they switch to long-term investment opportunities leading to slower talent

revelation. The stationary distribution of perceived talents determines the distribution of

fund sizes, leading to a large number of small (high-turnover) funds and a small number of

large (low-turnover) funds in the economy.

Another important feature of our model is that the gross alpha of a fund’s investment is

affected by the manager’s talent as well as the decreasing returns to scale at the aggregate

level; the excess return of a fund’s investment over the passive benchmark increases in the

level of its skill, but decreases in the magnitude of competition among funds in the same type

of opportunities. Decreasing returns to scale at the aggregate level is equivalent to strategic

substitutability in investment. It is well known in the literature that informed arbitrageurs

are strategic substitutes for each other (Grossman and Stiglitz [1980]). The feature that

the decreasing returns to scale parameter depends on the aggregate level of assets under

management (AUM) further enriches the Berk and Green framework, as in their model

funds’ investment profits do not depend on the AUM of the fund’s competitors.7

7Berk and Green (2004) assume decreasing returns to scale at the fund level. For more studies exploring
the importance of decreasing returns to scale at the fund level see Chen, Hong, Huang, and Kubik (2004),
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Consequently, the amount of capital invested in (and the resulting excess returns of)

investment opportunities are determined by the distribution of funds’ perceived skills. In

our model, fund manager choices are a function of two state variables: the perceived skill

(the posterior mean of the skill distribution) as well as the precision of beliefs regarding

this skill (the inverse of the posterior variance). This allows us to construct a parsimonious

Markov transition function of fund manager states. The steady state is computed using

the stationary distribution of the state variables. Under this stationary distribution, there

are many new and relatively unskilled funds in the economy. They invest in short-term

opportunities for growth options, which drive the value added of short-term opportunities

down to a level lower than long-term opportunities. As a result, old and skilled fund

managers optimally choose to invest in long-term opportunities to exploit higher profits.

The average value added of investing in short-term opportunities is smaller because of both

the competition for growth and the low average skill of new managers, whereas the average

value added of investing in long-term opportunities is larger because of both the lack of

competition and the high average skill of experienced managers.

Empirically, we use 59 years of US mutual fund data to confirm our model predictions

and estimate the value of the real growth option. Consistent with our model prediction

that high-turnover strategies reveal fund managers’ talents faster, we find that the flow-

performance sensitivity of high turnover funds decays faster over time than that of low

turnover funds, and the results are stronger for the returns in the past quarter or year than

returns in the past three years. The value of the real growth option is large to new managers

according to our parametric model calibrated to US data. For most new fund managers, the

present value of the real growth option given by short-term investing is larger than the higher

payoff given by long-term investing. As a result, most new fund managers prefer short-term

to long-term investing. This option value decreases as a manager gets more experienced,

since the precision regarding a manager’s talent increases over time. This option value

also has a hump-shaped relation with the perceived skill of a manager, because the growth

option is less useful to fund managers who are either close to unskilled, or skilled enough

Zhu (2018), Pastor, Stambaugh, and Taylor (2020), and Barras, Gagliardini, and Scaillet (2021).
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to shift to long-term strategies for a larger payoff. Moreover, the joint distribution of fund

size, manager tenure, and turnover in the data confirms the predictions in our model. New

and small funds are more likely to choose high-turnover strategies, while old and large funds

are more likely to choose low-turnover strategies. Old and small funds are more likely to

exit. Since the fund managers perceived by investors as skilled attract more capital and are

likely to switch to low-turnover strategies, low-turnover funds manage substantially more

assets than high-turnover funds do. For high-turnover funds, the number of new managers

is substantially more than the number of old managers, whereas for low-turnover funds, the

total amount of assets managed by old managers is substantially more than the amount

managed by new managers. Lastly, as our model predicts, because high-turnover strategies

offer higher future growth potential, new and small fund managers are willing to accept

lower current value added for high-turnover strategies. The value added of high-turnover

funds (close to zero) is substantially smaller than the value added of low-turnover funds

under both the CAPM and the Vanguard benchmarks.

The paper is organized as follows. In Section 2, we review related literature. In Sec-

tion 3, we describe our theoretical model. In Section 4, we solve for equilibrium of our

model. In Section 5, we provide main theoretical findings and test them empirically, and we

also quantify the value of the real growth option using a parametric model. In Section 6,

we conclude.

2 Literature

Our paper belongs to a body of literature that applies the real options approach to a wide

set of economic problems (see, for example, Dixit and Pindyck [1994], Trigeorgis [1996],

and Lambrecht [2017] for surveys). Drawing from research such as Bernanke (1983), Abel

and Eberly (1994, 1996), and Caballero and Pindyck (1996), the real options approach

underscores the importance of postponing investment until uncertainties are resolved. This

“option to wait” can be augmented with an “option to learn” about learning the existing

but unknown reality rather than the future (as in Grenadier and Malenko [2010] and this

paper). Real options also induce participants to choose different strategies over their life
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cycles (or career paths). For example, young individuals (often entrepreneurs) or firms

experiment when young to exploit the real option value of either expanding or abandoning

the current choice depending on the flow of new information (Bernado and Chowdhry [2002];

Manso [2016]; Bouvard [2014]). In our paper, we investigate how the value of the option to

learn changes across the life cycle of employees, as well as its effect on the distribution of

their value added. We use the mutual fund industry as a natural laboratory to empirically

examine the implications of our theoretical predictions within the context of the real options

approach.

Our paper closely relates to the literature on agency conflict between fund managers

and investors. Our new career incentive is related to but different from existing career incen-

tives of fund managers studied in the literature. For example, Brown, Harlow, and Starks

(1996), Chevalier and Ellison (1997), and Basak, Pavlova, and Shapiro (2007) document

that because investors’ capital is directed more to funds with higher performance, mid-

year underperforming managers tend to gamble in the later part of an annual assessment

period.8 More recently, Huang, Sialm, and Zhang (2011) argue that fund managers risk

shift to increase their personal compensation, and Agarwal, Gay, and Ling (2014) document

that fund managers window dress to attract capital. Guerrieri and Kondor (2012) find that

fund managers’ career concerns can generate countercyclical reputational premium in bond

returns, and Sockin and Xiaolan (2022) document that the commonality in compensation

incentives across funds distorts price informativeness, which feed back into fund manager

behavior. Relating to fund managers’ age or life-cycle consideration, Almazan, Brown, Carl-

son, and Chapman (2004) show that manager age is significantly related to the use of direct

investment restrictions in the mutual fund management process, and Chapman, Evans, and

Xu (2010) introduce life-cycle and longer-term learning effects into fund managers’ portfolio

choices, which focuses on the effect of learning on portfolio choice, instead of the effect of

funds’ strategies on learning as in our paper. To our best knowledge, Chen, Jiang, and

Xiaolan (2023) is the only other paper studying the interaction between funds’ strategies

and the speed of skill revelation, where they focus on funds’ marketing strategies instead of
8Chevalier and Ellison (1999) further show that to avoid being terminated, young managers on average

hold less unsystematic risk and have more conventional portfolios.
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investment horizon.

Our paper also relates to the literature on short-termism, particularly among insti-

tutional investors, which has garnered significant attention in academic and practitioner

circles due to its potential impact on economic outcomes (Graves and Waddock [1990];

Porter [1992]; Bushee [1998,2001]). Theoretical literature highlights the inefficiency caused

by short-termism arising from various incentive schemes in both corporate and delegated

investment setups (Stein [1989]; Scharfstein and Stein [1990]; Froot, Scharfstein, and Stein

[1992]; Dow and Gorton [1994]; Shleifer and Vishny [1997]; Gümbel [2005]; Allen, Mor-

ris, and Shin [2006]; Burkart and Dasgupta [2021]; Dow, Han, and Sangiorgi [2021]; Dow,

Han, and Sangiorgi [2023]).9 Numerous empirical studies have indeed documented the my-

opic focus of institutional investors on short-term returns, potentially neglecting long-term

value creation (Edelen [1999]; Manconi, Massa, and Yasuda [2012]; Cella, Ellul, and Gi-

annetti [2013]; Callen and Fang [2013]; Kim, Su, and Zhu [2017]). Our paper aligns with

the common theme in existing literature by highlighting the rationality of short-termism

as a response to incentive schemes. However, our paper differs itself by identifying the

source of short-termism as the option value of learning under career concerns in a delegated

investment setup. By deliberately passing more profitable long-term opportunities, short-

term investments seek to enhance future investment values by increasing the likelihood of

attracting larger fund flows through the channel of accelerated learning.

This paper contributes to the large corpus of literature on decreasing returns to scale of

mutual funds, including Berk and Green (2004), Chen, Hong, Huang, and Kubik (2004), Zhu

(2018), and Barras, Gagliardini, and Scaillet (2021). Our paper emphasizes the importance

of decreasing returns to scale at the investment opportunity level to the distribution of

mutual funds and their value added.10

Our paper also contributes to a growing literature on learning fund managers’ talents

under rational expectations. Scharfstein and Stein (1990) show that fund managers may
9For instance, Scharfstein and Stein (1990) show that short-term incentive contracts can lead to herding

behavior and disregard of private information, resulting in inefficiency. Shleifer and Vishny (1997) find that
fund managers, influenced by short-term fund flows, may overlook profitable long-term opportunities.

10While Pastor and Stambaugh (2012) and Pastor, Stambaugh, and Taylor (2015) have investigated the
decreasing returns to scale at the industry level, our paper focuses on the decreasing returns to scale at the
investment opportunity level and its interaction with fund managers’ career concerns.
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rationally mimic others’ investment decisions to avoid adverse career outcomes. By contrast,

Avery and Chevalier (1999) show that talented managers may differentiate their investments

to signal their abilities when they have sufficiently private information about their abilities.11

Choi, Kahraman, and Mukherjee (2016) show that fund flow to a manager’s fund can be

sensitive to his performance in other funds because of investors’ learning across funds.

Gervais and Strobl (2020) study a model where funds signal their private information on

their own ability via fund transparency. They find that transparent funds are run by

managers with more average talent whereas low- and high- skilled managers choose opaque

investment. Kaniel and Orlov (2020) study a model where a fund can churn managers

who have private information on own ability. They find that the fund churns unskilled

managers frequently to help retained managers build reputation fast, and also expropriates

managers’ ability by threatening to fire them. Our paper shares the common mechanism

of fund flows under rational expectations with existing papers in this line of literature. In

particular, we focus on how the investment horizon choices of fund managers evolve through

their careers under rational expectations. Our paper further compliments this literature by

studying the resulting feedback between optimal investment choices of fund managers and

equilibrium returns across those opportunities under the joint stationary distribution of

talent and tenure.

Our paper is related to both theoretical and empirical literature on investment and

performance in different horizons. Theoretically, Shleifer and Vishny (1990) and Dow and

Gorton (1994) show that long-term assets should have larger mispricing wedge than short-

term assets because investors can redeploy their capital faster. Dow, Han, and Sangiorgi

(2021) microfound equilibrium capital distributions in a dynamic model, and show how

mispricing wedge should be determined in equilibrium. Building on this intuition, our model

shows that fund performance difference across horizons arise from equilibrium distribution

of fund skills. Our model further suggests larger mispricing wedges can arise from an

alternative channel of career concern unlike above papers in the literature; fund managers
11The results of Avery and Chevalier (1999) imply that young managers may want to herd whereas old

managers may want to “anti-herd” to signal their talents. While this mechanism is different from ours, these
two mechanisms could coexist. Moreover, our papers share a common theme of career concern in that young
managers may want to sacrifice investment profits whereas old managers do not have such incentives.
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are willing to accept smaller trading profits in short-term investments for growth options.

Empirically, our paper focuses on the relation between fund turnover and the perceived

skill of a fund manager, measured by value added as proposed in Berk and van Binsbergen

(2015). In contrast, previous studies investigate the relation between fund turnover and the

abnormal return received by investors, measured by net alphas, or gross alphas, and the

empirical evidence on this relation is mixed. For example, Pastor, Stambaugh, and Taylor

(2017) document a positive relationship in both the time series and the cross-section. In

contrast, Elton, Gruber, Das, and Hlavka (1993), as well as Carhart (1997), find a negative

relationship, whereas Wermers (2000), Kacperczyk, Sialm, and Zheng (2005), and Edelen,

Evans, and Kadlec (2007) find no significant relationship. Cremers and Pareek (2016) and

Lan, Moneta, and Wermers (2019) construct direct measures for the average investment

horizon of a fund and find that long-horizon funds outperform short-horizon funds in the

cross-section, which is consistent with the finding in Van Binsbergen, Han, Ruan, and Xing

(2022) that mutual funds’ holdings longer than a year make more profits than holdings

shorter than a year do in the aggregate.12 Our model predicts that low-turnover funds do

have more skilled managers than high-turnover funds in equilibrium, since managers that

are new or perceived as unskilled prefer high-turnover strategies, which reveal their skills

faster. However, the larger amount of capital managed by low-turnover funds have brought

their net alphas to zero because of the decreasing returns to skill (as in Berk and Green

[2004]). Starks, Venkat, and Zhu (2022) document that long-horizon investors tilt their

portfolios towards firms with high-ESG profiles and behave more patiently toward these

firms. The results in our paper suggest that old skilled managers are more likely to invest

in long horizon and, thus, more likely to invest in firms with high-ESG profiles.
12Connecting funds’ investment horizons with market mispricing, Cella, Ellul, and Giannetti (2013) show

that institutional investors with short investment horizons sell more during market turmoil, and this creates
price pressure for stocks held mostly by short-horizon investors. Giannetti and Kahraman (2018) provide
evidence that open-end organizational structures undermine incentives for asset managers to attack long-
term mispricing.
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3 Model

We consider an infinite-horizon model in discrete time featuring fund managers’ career

concerns. Our model builds on the model of Berk and Green (2004), but unlike theirs, our

model features a continuum of managers who face investment opportunities with different

investment horizons and whose returns are endogenously determined by competition under

strategic substitutability.

3.1 Mutual Funds and Investment Opportunities

There is a continuum of mutual fund managers in the economy indexed by 𝑗 who each

manage a single fund. We denote the set of all active funds operating in period 𝑡 by

𝒥𝑡. Mutual funds have access to investment opportunities that may deliver excess returns

(alphas) over the passive benchmark.

There are two types of investment opportunities: short-term and long-term. We index

each type of investment opportunity by 𝑖 ∈ {𝑆,𝐿} where 𝑆 denotes short-term and 𝐿 de-

notes long-term. The investment opportunities can be interpreted as investment strategies

that exploit mispricings that resolve over different horizons. Investing in those opportunities

will deliver alphas when prices converge (at different speeds) to the fundamental value. For

example, in Shleifer and Vishny (1997), long-term opportunities may first deviate further

from fundamental value before converging. In this case, the price will only be informative

about fund managers’ skill after it has converged. For simplicity, we assume that an invest-

ment opportunity yields a zero excess return over the passive benchmark until its payoff

realizes. More formally, each fund 𝑗’s investment in a type 𝑖 opportunity yields a random

excess return over the benchmark before costs and fees between period 𝑡 and 𝑡 + 1, which

has two independent components as follows:

𝑒𝑗𝑡+1,𝑖𝑅
𝑗
𝑡+1,𝑖, (1)

where 𝑅𝑗𝑡+1,𝑖 is the fund’s excess return conditional on the realization of payoff, and 𝑒𝑗𝑡+1,𝑖

is an identically and independently distributed (i.i.d.) random variable that is equal to one

with probability 𝑑𝑖, and zero with probability 1 − 𝑑𝑖. A short-term investment opportunity
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is more likely to realize early compared to a long-term investment opportunity, i.e., 0 <

𝑑𝐿 < 𝑑𝑆 ≤ 1. The inverse of 𝑑𝑖 can be interpreted as the investment duration (i.e., the

payoff takes on average 1/𝑑𝑖 periods to realize). We also assume that the realization of the

payoff is public information.

As in Berk and Green (2004), we assume that the cost of actively managing funds

in each investment opportunity increases convexly in its size, and is independent of the

manager’s talent; investing an amount 𝑞 in each opportunity creates a cost of 𝐶(𝑞) for the

fund in the current period where 𝐶 ′(·) > 0, 𝐶 ′′(·) > 0, and 𝐶(0) = 0. Note that the cost

function is assumed to be identical for both investment opportunities for simplicity.13 The

assumption of increasing cost in the fund’s size of active management can be motivated by

costs related to price impact or illiquidity when acquiring, rebalancing, and liquidating its

positions (e.g., Kyle [1985]), and the convexity ensures a unique interior optimum.

We further assume that a fund can hold only one type of investment opportunity at a

time. This is a technical assumption that facilitates analysis on funds’ choice of investment

horizons. Although funds may diversify among different types of investment opportunities

in the data, they typically specialize in either short- or long- term opportunities. We also

assume that both the type and the amount of investment of each fund are observable to

investors.

In our model, the gross alpha of a fund’s investment is affected by the manager’s talent

as well as the capacity constraint at the aggregate level; the excess return of a fund’s

investment over the passive benchmark increases in the level of talent, but decreases in the

magnitude of competition among funds in the same type of opportunities. The capacity

constraint at the aggregate level is equivalent to strategic substitutability in investment. It

is well-known in the literature that informed arbitrage leads to strategic substitutability as

more participation in informed trading eliminates mispricing (e.g., Grossman and Stiglitz

[1980]). See, for example, Dow, Han, and Sangiorgi (2021) for a microfoundation of strategic
13For ease of exposition, we shut down the channel of heterogeneity in fund-level decreasing returns to scale

for investment opportunities. This allows us to focus on heterogeneity in aggregate-level decreasing returns
to scale. Van Binsbergen, Han, Ruan, and Xing (2022) investigate the difference in fund-level decreasing
returns to scale between high- and low- turnover funds. It is worth noting that although high-turnover
strategy gives a lower value added than low-turnover strategy in equilibrium, heterogeneity in fund-level
decreasing returns to scale allows the former to have a higher gross alpha and fee than the latter.
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substitutability with investment opportunities under different horizons.

Formally, we denote by 𝑞𝑗𝑡,𝑖 the amount of fund 𝑗’s investment in a type 𝑖 opportunity,

and by 𝜇𝑡,𝑖 the fraction of capital invested in type 𝑖 opportunity in period 𝑡:

𝜇𝑡,𝑖 ≡
∫︀
𝑗∈𝒥𝑡

𝑞𝑗𝑡,𝑖𝑑𝑗∫︀
𝑗∈𝒥𝑡

𝑞𝑗𝑡,𝑆𝑑𝑗 +
∫︀
𝑗∈𝒥𝑡

𝑞𝑗𝑡,𝐿𝑑𝑗
.

Using the fraction of capital rather than the amount of capital invested in each investment

opportunity reduces the number of state variables, thereby greatly simplifying our analy-

sis.14 The fraction of investment 𝜇𝑡,𝑖 captures the magnitude of competition of funds in

opportunity 𝑖. After all, the higher the value of 𝜇𝑡,𝑖, the larger the total amount of capital

competing for the opportunity 𝑖, which lowers the equilibrium abnormal return of investing

in that opportunity.15 Fund 𝑗’s excess return on a type 𝑖 investment opportunity increases

in the talent parameter 𝜑𝑗 , which captures the fund manager’s true ability of generating

alpha and value,16 and decreases in the magnitude of competition 𝜇𝑡,𝑖:

𝑅𝑗𝑡+1,𝑖(𝜇𝑡,𝑖, 𝜑
𝑗) ≡ 𝑔𝑖(𝜇𝑡,𝑖)(𝜑𝑗 + 𝜖𝑗𝑡+1),

where 𝑔𝑖(𝜇𝑡,𝑖) is a non-negative, decreasing function of 𝜇𝑡,𝑖 which captures the idea that

the profitability of a type 𝑖 investment opportunity decreases as the competition between

similar funds increases. The term 𝜖𝑗𝑡+1 is a mean-zero idiosyncratic noise component specific

to fund 𝑗’s investment strategy with variance 1/𝜔𝑗𝑡 . For now, we assume that the marginal

return on an investment opportunity is infinite if no one invests in the opportunity, i.e.,

𝑔𝑖(0) = ∞ for all 𝑖 ∈ {𝑆,𝐿}, but we will relax this assumption in our empirical work.

Each fund is terminated randomly with a probability 1 − 𝜅 every period, but may also
14Our qualitative results are robust with different choices of modeling as long as there exists strategic

substitutability in returns.
15We show later in our regression analysis in Table A2 that the effect of industry level decreasing returns

to scale (DRS) becomes insignificant after including the investment opportunity level DRS into the same
regression. Fund level DRS remains significant.

16Given that the DRS parameter is assumed to be the same across funds, this talent parameter 𝜑𝑗 can
also be interpreted as the future potential of a fund manager that needs to be learned about not only by
investors, but also by the fund manager themselves. We assume the same talent parameter 𝜑𝑗 for investing
in short- and long- term opportunities to focus on the difference in speed of learning provided by these two
opportunities and abstract away from their specializations. Please refer to Van Binsbergen, Han, Ruan, and
Xing (2022) for the effect of specialization (i.e., heterogeneous talents for short- and long- term investing)
on the distribution of funds’ value added.
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voluntarily shut down its operation when the continuation value is lower than the outside

option. All funds that exit the economy are replaced by the same mass of new funds that

enter the economy. This simplifying assumption gives us more tractability by preventing

the mass of funds from becoming another state variable in the economy. At the birth of

a new fund (indexed by 𝑗), the fund manager in fund 𝑗 is endowed with a skill level 𝜑𝑗 .

As in Berk and Green (2004), we assume that this talent parameter 𝜑𝑗 is known to neither

investors nor managers, and follows an i.i.d. normal prior distribution with mean 𝜑0 and

variance 1/𝛾 where 𝛾 is the precision of the prior belief on 𝜑𝑗 ’s.

3.2 Fund Performance and Belief Updates on Skills

The fund manager in fund 𝑗 is paid a management fee 𝑓 𝑗𝑡 in each period 𝑡, which is a fraction

of its asset under management 𝑞𝑗𝑡,𝑖. The fund’s excess total payout to investors over the

passive benchmark in the subsequent period is

𝑇𝑃 𝑗𝑡+1 ≡ 𝑞𝑗𝑡,𝑖𝑒
𝑗
𝑡+1,𝑖𝑅

𝑗
𝑡+1,𝑖 − 𝐶(𝑞𝑗𝑡,𝑖) − 𝑞𝑗𝑡,𝑖𝑓

𝑗
𝑡 .

Then, the excess return of fund 𝑗 after fees is given by

𝑟𝑗𝑡+1 ≡
𝑇𝑃 𝑗𝑡+1

𝑞𝑗𝑡,𝑖
= 𝑒𝑗𝑡+1,𝑖𝑅

𝑗
𝑡+1,𝑖 −

𝐶(𝑞𝑗𝑡,𝑖)
𝑞𝑗𝑡,𝑖

− 𝑓 𝑗𝑡 , (2)

where 𝑐𝑖(𝑞𝑗𝑡,𝑖) is the unit cost associated with investing in fund 𝑗 that actively manages the

size of investment 𝑞𝑗𝑡,𝑖 in opportunity 𝑖:

𝑐𝑖(𝑞𝑗𝑡,𝑖) ≡
𝐶(𝑞𝑗𝑡,𝑖)
𝑞𝑗𝑡,𝑖

+ 𝑓 𝑗𝑡 .

Therefore, the fund’s excess return with the choice of investment in opportunity 𝑖 can be

represented as

𝑟𝑗𝑡+1 = 𝑒𝑗𝑡+1,𝑖

(︁
𝜑𝑗 + 𝜖𝑗𝑡+1

)︁
𝑔𝑖(𝜇𝑡,𝑖) − 𝑐𝑖(𝑞𝑗𝑡,𝑖). (3)

Because the size of the fund as well as the type of investment opportunity, which is

summarized by 𝑞𝑗𝑡,𝑖, are observable for all funds, the aggregate amount of investment, 𝜇𝑡,𝑖,

is common knowledge for each type of investment opportunity 𝑖 ∈ {𝑆,𝐿}. This also implies
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other quantities like 𝑐𝑖(𝑞𝑗𝑡,𝑖) and 𝑔𝑖(𝜇𝑡,𝑖) are also common knowledge for each opportunity 𝑖

and fund 𝑗 in equilibrium. Therefore, we can define a new variable 𝜉𝑗𝑡+1 which is a known

function of observable variables:

𝜉𝑗𝑡+1 ≡
𝑟𝑗𝑡+1 + 𝑐𝑖(𝑞𝑗𝑡,𝑖)

𝑔𝑖(𝜇𝑡,𝑖)
. (4)

Then, Eqs. (1) and (2) imply that all relevant information regarding 𝑟𝑗𝑡+1, 𝑐𝑖(𝑞𝑗𝑡,𝑖), and

𝑔𝑖(𝜇𝑡,𝑖) is summarized in variable 𝜉𝑗𝑡+1 whenever the payoff realizes, and it takes the value

zero otherwise:

𝜉𝑗𝑡+1 =

⎧⎪⎨⎪⎩ 𝜑𝑗 + 𝜖𝑗𝑡+1 if 𝑒𝑖 = 1

0 if 𝑒𝑖 = 0.

All agents update their posterior belief on each fund’s talent on the basis of the entire

history of 𝜉𝑗𝑡 in a Bayesian manner. Let the posterior mean of fund 𝑗’s talent in period 𝑡 be

denoted as

𝜑𝑗𝑡 ≡ E𝑡[𝜑𝑗 ] = E[𝜑𝑗 |𝜉𝑗1, ..., 𝜉
𝑗
𝑡 ],

and let 𝜏 𝑗𝑡 denote the number of payoff realizations (or the number of belief updates) of fund

𝑗 by period 𝑡. That is, there is 𝜏 𝑗𝑡 informative signals in the sequence 𝜉𝑗1, ..., 𝜉
𝑗
𝑡 . Because by

assumption, investors only learn from strategies’ realized payoffs, they have more precise

information about fund 𝑗 for larger values of 𝜏 𝑗𝑡 . In this setting, the number of realized

payoffs captures the fund manager’s track record in investing.

The following lemma derives the law of motion for the posterior belief on the fund

manager’s talent. For simplicity, we assume from here on that the idiosyncratic noise

𝜖𝑗𝑡+1 is normally distributed with a constant variance 1/𝜔𝑗𝑡 = 1/𝜔 for both investment

opportunities.17

17This assumption helps us focus on the effect of investment horizons on the speed of learning in our model.
Since the dispersion in funds’ investment horizons between high- and low- turnover funds is substantially
larger than the dispersion in return volatility, investment horizon has a first-order effect on the difference in
the speed of learning between high- and low- turnover funds, whereas the effect of idiosyncratic noise appears
second-order. The average investment horizon of funds in turnover quintile 5 is about five years, which is
about ten times the investment horizon of funds in quintile 1. Whereas, the standard deviation of monthly
returns for funds in turnover quintile 5 is 4.9%, which is close to the 5.7% for funds in qunitile 1. Moreover, if
it is the noise at the time of realization that affects investors’ learning, the variance term 1/𝜔𝑗

𝑡 should not be
very different for short- and long- term opportunities. For example, the realization of a short-term strategy
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Lemma 1. The posterior belief 𝜑𝑗𝑡 about fund 𝑗’s talent parameter 𝜑𝑗 is given as a function

of the prior belief 𝜑𝑗𝑡−1, the number of payoff realizations 𝜏 𝑗𝑡 , and the sufficient statistic for

performance in the previous period 𝜉𝑗𝑡 as follows:

𝜑𝑗𝑡 = 𝜑𝑗𝑡−1 + 𝑒𝑗𝑡,𝑖

(︃
𝜔

𝛾 + 𝜏 𝑗𝑡 𝜔

)︃
(𝜉𝑗𝑡 − 𝜑𝑗𝑡−1). (5)

Proof. Given the realization of 𝑒𝑗𝑡,𝑖, Bayes’ rule implies

𝜑𝑗𝑡 = (1 − 𝑒𝑗𝑡,𝑖)𝜑
𝑗
𝑡−1 + 𝑒𝑗𝑡,𝑖

[︃
𝛾 + (𝜏 𝑗𝑡 − 1)𝜔
𝛾 + 𝜏 𝑗𝑡 𝜔

𝜑𝑗𝑡−1 + 𝜔

𝛾 + 𝜏 𝑗𝑡 𝜔
𝜉𝑗𝑡

]︃

3.3 Fund Manager’s Optimization Problem

In period 𝑡, each fund 𝑗 can choose its investment type 𝑖 ∈ {𝑆,𝐿} and its fee 𝑓 𝑗𝑡 ,18 to

maximize the present value of its expected utility of receiving the stream of fees such that

E𝑡

⎡⎣ 𝑇 𝑗∑︁
𝑠=𝑡

𝑢
(︁
𝑞𝑗𝑠,𝑖𝑓

𝑗
𝑠

)︁⎤⎦ , (6)

where 𝑇 𝑗 is the last period in which the fund operates before exiting, and 𝑢(·) is a twice-

differentiable, bounded utility function with 𝑢′ > 0, 𝑢′′ < 0 and 𝑢(0) = 0.19 20

betting on a firm’s earnings becomes public instantly after an earnings announcement, and the realization of
a long-term strategy betting on a long-term R&D project becomes public instantly after an announcement
of its success or failure. Only the return noises around the time of these announcements affect the learning,
and the return noises in other time periods have no such effect.

18If fund managers are allowed to invest a portion of their fund in the passive benchmark (i.e., “closet
indexing”) as in Berk and Green (2004), fund managers can choose any fee lower than or equal to the
optimal fee 𝑓 𝑗

𝑡 * in the current problem. In this case, the problem of each fund 𝑗 becomes choosing the
optimal amount 𝑞𝑗

𝑠,𝑖 to invest actively into opportunity 𝑖 ∈ {𝑆, 𝐿} instead, and invest the rest of capital in
the passive benchmark. The maximum value added of each manager and the fee revenue that she could earn
stays the same as in our current setting. While the percentage fee and fund size are no longer individually
uniquely determined when indexing is allowed, their product is.

19The assumption that the utility function is bounded and concave does not affect our results qualita-
tively. Because a fund manager’s perceived talent, which follows a normal distribution, is unbounded, their
performance is also possibly unbounded. This causes technical difficulty in our analysis because the value
function becomes potentially unbounded. By bounding rewards to finite values, we can ensure that the value
function is bounded. Under the boundedness of the utility function, from which the concavity follows, we
can obtain existence of the value function using the standard Banach fixed point theorem (see the proof of
Theorem 3 in Appendix A). Furthermore, the concavity does not affect the choice of size (See Eq. (13) and
footnote 21).

20As reported in Ibert, Kaniel, van Nieuwerburgh and Vestman (2018), a fund manager’s compensation
on average increases with the fee revenue of a fund. Our general form of utility function guarantees that our
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Following the rational expectations assumption in the literature, as in the seminal paper

by Berk and Green (2004), we similarly assume that there is a continuum of investors who

can invest either in funds by paying fees or in the passive benchmark without any cost. We

assume that investors are unconstrained (or equivalently, their supply of capital is infinitely

elastic for any investment opportunity with positive excess returns). Therefore, investors’

capital will flow to and from funds until each fund 𝑗 has a zero net expected excess return

over the passive benchmark after fees (net alpha):

E𝑡[𝑟𝑗𝑡+1] = 0, (7)

where 𝑟𝑗𝑡+1 is the excess return of fund 𝑗’s investment in time 𝑡. Substituting Eq. (3) into

Eq. (7) yields

𝑑𝑖𝜑
𝑗
𝑡𝑔𝑖(𝜇𝑡,𝑖) = 𝑐𝑖(𝑞𝑗𝑡,𝑖) =

𝐶(𝑞𝑗𝑡,𝑖)
𝑞𝑗𝑡,𝑖

+ 𝑓 𝑗𝑡 . (8)

That is, the fund flow equates the average excess return with the average cost in equilibrium.

Therefore, Eq. (8) implies the revenue of the fund is given by

𝑞𝑗𝑡,𝑖𝑓
𝑗
𝑡 = 𝑑𝑖𝜑

𝑗
𝑡𝑔𝑖(𝜇𝑡,𝑖)𝑞

𝑗
𝑡,𝑖 − 𝐶(𝑞𝑗𝑡,𝑖). (9)

We focus our analysis on the stationary equilibrium. The fund manager’s optimal choice

can fully be characterized by two state variables: the perceived talent 𝜑 and the number

of payoff realizations 𝜏 . Since, in the stationary equilibrium, every endogenous variable is

time-invariant (by definition), we will drop the time subscript 𝑡. We will also drop fund

index 𝑗 for notational convenience. Then, we can represent the maximization problem in

Eq. (6) in a recursive form; the value of continuing the operation of an individual fund given

the state variables 𝜑, 𝜏 can be written as

𝑉 (𝜑, 𝜏) ≡ max
{︁
𝑉𝑆(𝜑, 𝜏), 𝑉𝐿(𝜑, 𝜏)

}︁
, (10)

findings also hold for the specific case where a fund manager maximize its life-time compensation, which is
an increasing function of the fund’s total fee revenue.
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where 𝑉𝑖(𝜑, 𝜏) is the value of choosing a type 𝑖 investment opportunity such that

𝑉𝑖(𝜑, 𝜏) ≡ sup
𝑞𝑖∈[0,∞)

𝑢
(︁
𝑑𝑖𝜑𝑔𝑖(𝜇𝑖)𝑞𝑖 − 𝐶(𝑞𝑖) − 𝐹

)︁
+ 𝜅

(︁
(1 − 𝑑𝑖) max

{︁
𝑉 (𝜑, 𝜏), 𝑢0

}︁
+ 𝑑𝑖 E

[︁
max

{︁
𝑉 (𝜑′, 𝜏 + 1), 𝑢0

}︁ ⃒⃒⃒
𝜑, 𝜏

]︁)︁
,

(11)

and 𝜑′ denotes the posterior of the perceived talent after the next payoff realization:

𝜑′ = 𝜑+
(︂

𝜔

𝛾 + (𝜏 + 1)𝜔

)︂
(𝜉 − 𝜑). (12)

The fund manager chooses to exit when the fund’s continuation value of operation

becomes less than or equal to a reservation utility 𝑢0 for the first time as shown in Eq. (10).

The reservation utility 𝑢0 is the utility that a fund managers can get from their outside

option. In other words, it is their opportunity cost of running a fund. If the fund manager

decides to continue, it chooses either the long-term or the short-term opportunity, and

decides the investment size by setting the fee 𝑓 . The possibility of exit has option value,

which is reflected in the continuation value in Eq. (11). This optionality is the key to fund

manager behavior as is shown in the next section.

4 Equilibrium

4.1 Equilibrium Fund Flow

In this subsection, we analyze equilibrium fund flow. Given the choice of investment type

𝑖 ∈ {𝑆,𝐿}, the first order condition in Eq. (11) implies that the optimal fund size 𝑞*
𝑖 should

solve

𝑑𝑖𝜑𝑔𝑖(𝜇𝑖) = 𝐶 ′
𝑖(𝑞*

𝑖 ). (13)

21 That is, the fund sets its size so that the expected excess return on the marginal dollar

equal to the marginal cost of expansion.
21Note that the total revenue in Eq. (9) is a deterministic function of the chosen fee by the fund, so the

monotonic transformation 𝑢(·) of a deterministic function does not alter the optimization problem in any
other way. This is why the concavity of the utility function does not affect the fund’s choice of size. But
the concavity and the boundedness of 𝑢(·) help achieve existence of the value function by preventing it from
exploding with high values of 𝜑.
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We denote by 𝑞*
𝑖 (𝜑) the solution of Eq. (13) given the values of 𝜑. Then, it is immediate

that 𝑞*
𝑖 (𝜑) increases in the perceived talent 𝜑 because 𝐶 ′ > 0. Furthermore, 𝑞*

𝑖 (0) = 0

because the marginal benefit is less than the marginal cost, i.e., 0 = 𝑑𝑖𝜑𝑔𝑖(𝜇𝑖) ≤ 𝐶 ′
𝑖(𝑞𝑖) with

𝜑 = 0 (the fund size becomes zero when 𝜑 = 0).22

Because the size of a fund increases in the perceived skill of its fund manager (Eq. (13))

and a manager is perceived to be more skilled with better performance (Lemma 1), it is

immediate that fund flow increases in its excess return between the current and the previous

periods.

Lemma 2. Given investment type 𝑖, the fund flow sensitivity to excess return for a fund

with size 𝑞*
𝑖 and experience 𝜏 is given by

𝜕𝑞*
𝑖

𝜕𝑟𝑖
=
(︃

𝑑𝑖
𝐶 ′′(𝑞*

𝑖 )

)︃(︂
𝜔

𝛾 + 𝜏𝜔

)︂
> 0. (14)

Proof. See Appendix.

Eq. (14) implies that fund flow sensitivity to net performance is increasing in the payoff

frequency 𝑑𝑖. All else equal, fund flow for a given amount of net performance should be

more sensitive for short-term investments than for long-term ones. This simply reflects the

fact that trading profits are more likely to realize for short-term investments. In addition,

Eq. (14) implies that the fund flow sensitivity should be higher for newer managers (i.e.,

𝜏 low) because there is a larger degree of belief updating given new information regarding

skill. Most importantly, Eq. (14) further implies that the flow-performance sensitivity of

high-turnover funds decreases faster with an increase of 𝜏 than that of low-turnover funds.

That is, the learning of fund skill is faster for high-turnover funds than for low-turnover

ones.

4.2 Optimal Choice

Using the optimal size derived under a given investment opportunity, we can represent the

indirect value of choosing each type 𝑖 ∈ {𝑆,𝐿} of investment opportunity in Eq. (11) as
22We show later that new fund managers with negative perceived skill still have a positive value from the

real growth option, since they have a chance of proving themselves to be skilled (𝜑 > 0) in the future.
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follows:

𝑉𝑖(𝜑, 𝜏) = Π𝑖(𝜑) + 𝜅(1 − 𝑑𝑖)𝑉 (𝜑, 𝜏) + 𝜅𝑑𝑖 E
[︁
max

{︁
𝑉 (𝜑′, 𝜏 + 1), 𝑢0

}︁ ⃒⃒⃒
𝜑, 𝜏

]︁
, (15)

where Π𝑖(𝜑) is the expected utility of the fund’s payoff in the current period:

Π𝑖(𝜑) ≡ 𝑢
(︁
𝑑𝑖𝜑𝑔𝑖(𝜇𝑖)𝑞*

𝑖 − 𝐶(𝑞*
𝑖 )
)︁
, (16)

and 𝑞*
𝑖 is the implicit solution for Eq. (13).

Given the results presented above, we can establish existence and uniqueness of the

value function, and also characterize it.

Theorem 3. There exists a unique value function 𝑉 that solves Eqs. (10)-(12). Further-

more, 𝑉 strictly increases in 𝜑 for each 𝜏 ∈ N, and strictly decreases in 𝜏 for each 𝜑 ∈ R

(i.e., 𝑉 (𝜑, 𝜏) > 𝑉 (𝜑, 𝜏 + 1) for each 𝜑 and 𝜏).

Proof. See Appendix A.

We can use the properties of the value function found in Theorem 3 to characterize the

fund manager’s optimal choice regarding exit and whether to invest long-term or short-term.

In the following two theorems, we show that the fund manager uses threshold strategies for

both choices.

4.2.1 Optimal Exit Choice

The fund manager chooses to exit whenever the maximum value of continuing investment is

less than the reservation utility for the outside option, i.e., 𝑉 (𝜑, 𝜏) < 𝑢0. Then, Theorem 3

implies that, given 𝜏 , the fund manager chooses to exit if and only if the perception of talent

is sufficiently low, i.e., 𝜑 is less than a threshold 𝜑𝐸(𝜏) which is the solution to

𝑉 (𝜑𝐸(𝜏), 𝜏) = 𝑢0. (17)

Furthermore, it is immediate that 𝜑𝐸(𝜏) strictly increases in 𝜏 (because 𝑉 is continuous),

strictly decreases in 𝜑, and strictly decreases in 𝜏 (Theorem 3). That is, the exit threshold of
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perceived talent increases as the posterior variance regarding skill decreases. We summarize

the results by the following theorem.

Theorem 4. (Exit choice) A fund manager with perceived talent 𝜑 and the number of belief

updates 𝜏 exits if and only if 𝜑 < 𝜑𝐸(𝜏). Furthermore, the exit threshold 𝜑𝐸(𝜏) increases

in 𝜏 .

The fund manager’s incentive to continue operation with a low perception of talent

becomes weaker if the perception is more precise. Intuitively, the value of the growth option

decreases as the variance of the underlying goes down. That is, a new fund perceived as

unskilled may continue operation even with continued underperformance, hoping for better

performance that will upgrade their talent perception. But, an old, unskilled fund is likely

to exit with continued underperformance.

4.2.2 Optimal Investment Choice

Similarly, the value of the growth option also drives the fund manager’s choice of investment

opportunities. Conditioning on continuing the operation (i.e., 𝜑 ≥ 𝜑𝐸(𝜏)), the fund manager

strictly prefers short-term investment if and only if 𝑉𝑆(𝜑, 𝜏) > 𝑉𝐿(𝜑, 𝜏), or equivalently:

(𝑑𝑆 − 𝑑𝐿)𝜅
{︁

E
[︁
max

{︁
𝑉 (𝜑′, 𝜏 + 1), 𝑢0

}︁ ⃒⃒⃒
𝜑, 𝜏

]︁
− 𝑉 (𝜑, 𝜏)

}︁
> Π𝐿(𝜑) − Π𝑆(𝜑). (18)

The left hand side (LHS) of Eq. (18) represents the incremental continuation value (growth

potential) provided by the higher speed of skill revelation of short-term relative to long-

term investment opportunities, whereas the right hand side (RHS) represents the difference

in compensation in the current period. The benefit of revealing talent arises from the

protection against downward risk due to the optionality of manager exit. The fund manager

enjoys higher expected payoff in the future in case of good performance, but can minimize

the impact of bad performance by simply exiting from the industry. By choosing the short-

term investment, a fund can exploit the option value of exiting, though the value of the real

growth option decreases as the precision regarding the manager’s talent increases.

Using Eq. (18), we can show that the fund manager strictly prefers the short-term

investment whenever their perceived talent is low enough at the given level of belief precision.
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That is, given the precision of talent perception, the fund manager chooses the short-term

investment if the perception of talent is sufficiently low, i.e., 𝜑 is less than a threshold 𝜑𝑆(𝜏)

which is the lowest value (in case of multiple solutions) of 𝜑𝑆(𝜏) that solves

𝑉𝑆(𝜑𝑆(𝜏), 𝜏) = 𝑉𝐿(𝜑𝑆(𝜏), 𝜏). (19)

It is difficult to characterize general properties of the threshold due to the nature of the

problem that does not allow a closed-form solution. But, we can still characterize them in a

limiting case where short-term investment only offers growth potentials without profit (i.e.,

𝑔𝑆(𝜇𝑆) is sufficiently small), and long-term investment only offers profits without growth

potentials (i.e., 𝑑𝐿 is sufficiently small with 𝑑𝐿𝑔𝐿(𝜇𝐿) being fixed to a positive constant).

Our findings in this special case are consistent with the results from numerical analyses of

the general model in Section 5.

Theorem 5. (Investment choice) Under the condition that 𝑑𝐿 and 𝑔𝑆(𝜇𝑆) are sufficiently

small with 𝑑𝐿𝑔𝐿(𝜇𝐿) being fixed to a positive constant, there exists 𝜑𝑆(𝜏) such that a fund

manager with perceived talent 𝜑 and the number of belief updates 𝜏 chooses the short-term

investment if 𝜑𝐸(𝜏) ≤ 𝜑 < 𝜑𝑆(𝜏), and the threshold 𝜑𝑆(𝜏) strictly decreases in 𝜏 .

Proof. See Appendix A.

The intuition of this theorem is as follows. Fund managers choose to invest short-term

to exploit the value of the real growth option if their talent is perceived to be low. When

fund managers are perceived to be skilled, however, they invest long-term to exploit high

profits. Furthermore, fund managers tend to invest short-term if they are newer (lower

values of 𝜏). Newer fund managers whose talent is less known can exploit the value of the

real growth option better than old managers whose talent is already better known. That is,

the transition threshold to long-term investment becomes lower as a fund manager becomes

more experienced.
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4.2.3 Real Growth Option

In this section, we define the value of the real growth option provided by short-term in-

vestment strategies. It is worth noting that the exit option in Section 4.2.1 is similar to a

put option with a strike price 𝐾 = 𝑢0 that expires in the next period. If the probability of

having a belief update is 100% (i.e, 𝑑𝑖 = 1), the value function Eq. (15) has a payoff similar

to the value of a put option plus the value of the underlying asset 𝑉 (𝜑, 𝜏). Representing

this in the standard put-call parity framing, we obtain:

𝑃𝑢𝑡+ 𝑉 = 𝜅𝐾 + 𝐶𝑎𝑙𝑙 +𝐷𝑖𝑣, (20)

where 𝐷𝑖𝑣 is the dividends paid by the asset before the execution of the option. In Eq. (15),

the 𝐷𝑖𝑣 term corresponds to the manager’s current payoff Π𝑖(𝜑). The other term left in

Eq. (15), 𝜅E
[︁
max

{︁
𝑉 (𝜑′, 𝜏 + 1), 𝑢0

}︁ ⃒⃒⃒
𝜑, 𝜏

]︁
, corresponds to the present value of the strike

price plus the value of a call option (i.e., 𝜅𝐾 + 𝐶𝑎𝑙𝑙). If the strike price gets close to zero

(i.e., 𝐾 = 𝑢0 → 0), the value of 𝜅E
[︁
max

{︁
𝑉 (𝜑′, 𝜏 + 1), 𝑢0

}︁ ⃒⃒⃒
𝜑, 𝜏

]︁
is similar to the value of

a call option.23

If the probability of having a belief update is zero (i.e, 𝑑𝑖 = 0), the value function

Eq. (15) becomes the value of a perpetuity:

𝑉 = 𝜅𝑉 +𝐷𝑖𝑣. (21)

Therefore, the option value of short-term strategies, which have a higher probability of

a belief update 𝑑𝑆 > 𝑑𝐿, comes from the call option value from the term

𝜅E
[︁
max

{︁
𝑉 (𝜑′, 𝜏 + 1), 𝑢0

}︁ ⃒⃒⃒
𝜑, 𝜏

]︁
in Eq. (15) relative to the value of continuing with the

same value 𝑉 (𝜑, 𝜏) as before. To capture this option value, we define the value of the real

growth option provided by the short-term strategies as the LHS of Eq. (18):

𝑂𝑝𝑡𝑖𝑜𝑛 𝑉 𝑎𝑙𝑢𝑒 = (𝑑𝑆 − 𝑑𝐿)𝜅
{︁

E
[︁
max

{︁
𝑉 (𝜑′, 𝜏 + 1), 𝑢0

}︁ ⃒⃒⃒
𝜑, 𝜏

]︁
− 𝑉 (𝜑, 𝜏)

}︁
, (22)

which captures the value of higher learning speed provided by short-term investing. As we
23Different from a typical American call option, which cannot be canceled once executed, our real growth

option allows exiting at any time.

24



have shown in Eq. (18), a fund manager would choose short-term investing if and only if

the value of the real growth option (i.e., the LHS of Eq. (18)) is larger than the RHS, which

represents the difference in compensation between long- and short- term investing in the

current period.

4.2.4 Equilibrium Value Added under Career Concern

The choice between short-term and long-term investment in Eq. (18) has important implica-

tions for equilibrium value added. Because the short-term investment offers higher growth

potential, long-term investment opportunities should compensate with higher profits than

those of short-term investment, offering higher value added for a given posterior mean of the

fund manager’s talent. Otherwise, no manager will choose to invest long-term. Therefore,

in equilibrium, the long-term investment will generate higher value added (which equals fee

revenues) than the short-term investment when managers are risk-neutral as in Berk and

Green (2004):

Theorem 6. In equilibrium, the value added of long-term investment is strictly greater than

that of short-term investment fixing the perceived talent level, i.e., Π𝐿(𝜑) > Π𝑆(𝜑) for all

𝜑 ∈ (0,∞).

Proof. See Appendix A.

Theorem 6 shows that endogenous returns with capacity constraints driven by strategic

substitutability play a key role in achieving equilibrium. The short-term investment will

attract fund managers until its value added has eroded to below that of the long-term

investment where the difference captures the option value attached to it. This option value

is therefore a contributor to investors’ myopia induced by misaligned incentives between

delegated investors and ultimate owners of assets.24 Even though investors want to exploit

higher value added in long-term investment opportunities, there is limited access to long-

term investment relative to short-term investment due to fund managers’ career concerns.
24See, for example, Dow, Han, and Sangiorgi [2021a] and Dow, Han, and Sangiorgi [2021b] for further

discussion on other possible sources of investor short-termism. Active investors (or informed investors) may
prefer short-term investment because they can redeploy their capital faster to new opportunities (Dow, Han,
and Sangiorgi [2021a]) or they have exposure to potential liquidity shocks (Dow, Han, and Sangiorgi [2021b]).
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Theorem 5 implies that, at the given precision of talent perception, fund managers

investing long-term should be perceived to be more talented than those investing short-

term under the given assumptions of the theorem. This in turn implies that, at the given

level of precision of talent perception, those investing long-term should create greater value

added than those investing short-term due to Theorem 6. Therefore, the following corollary

is immediate from the two previous theorems.

Corollary 7. Under the assumptions of Theorem 6, the value added of a fund investing

long-term is strictly greater than that of a fund investing short-term holding the number of

belief updates 𝜏 constant.

4.3 Markov Transition Function and Stationary Distribution

In the previous sections, we show that the optimal decision of a fund manager is completely

specified by the state variables 𝜑 and 𝜏 : the perceived talent and the number of belief

updates. In this subsection, we construct the transition function of these two state variables.

For ease of exposition, we introduce the following new notation. We denote by 𝐼(𝜑, 𝜏) an

indicator function which equals one if a fund with (𝜑, 𝜏) continues its operation and zero

otherwise. We denote by 𝑑(𝜑, 𝜏) the probability of payoff realizations per period given

the optimal choice under (𝜑, 𝜏), i.e., 𝑑(𝜑, 𝜏) = 𝑑𝑆 if the short-term strategy is chosen and

𝑑(𝜑, 𝜏) = 𝑑𝐿 otherwise. Finally, we denote by 𝜏 = 𝑋 the state of exit.

The state process of each individual fund manager follows a Markov process. Using the

results in Section 4.2, we can represent the transition probabilities between different states

as follows:

Lemma 8. The Markov transition function 𝑍 from current state (𝜑, 𝜏) to future state

(𝜑′, 𝜏 ′) is given by

𝑍
(︁
𝜑′, 𝜏 ′

⃒⃒⃒
𝜑, 𝜏

)︁
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝜅𝐼(𝜑, 𝜏)𝑑(𝜑, 𝜏)𝑛
(︁
(𝛾 + 𝜏𝜔)

(︁
𝜑′ − 𝜑

)︁)︁
if 𝜏 ′ = 𝜏 + 1;

𝜅𝐼(𝜑, 𝜏)(1 − 𝑑(𝜑, 𝜏)) if 𝜏 ′ = 𝜏 ;

1 − 𝜅𝐼(𝜑, 𝜏) if 𝜑′ = 𝜑, 𝜏 ′ = 𝑋;

0 otherwise,

(23)
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where 𝑛(·) is the probability density function of the standard normal distribution.

Proof. See Appendix A.

The first line in Eq. (23) provides the probability of having a transition to (𝜑′, 𝜏 ′)

from (𝜑, 𝜏) with return realizations. The second line provides the probability of having no

transition at state (𝜑, 𝜏). The third line provides the probability of exit at state (𝜑, 𝜏).

The fourth line is the probability of having a transition to any other state than the three

categories specified above, and is zero when those are unreachable states from (𝜑, 𝜏) (for

example, 𝜏 − 1 cannot be reached from 𝜏).

We denote by 𝜈(𝜑, 𝜏) the joint density of the state (𝜑, 𝜏) in the current period. Because

the perceived talent is continuous and the realization of payoffs is discrete, 𝜈(·, ·) is a mixed

joint density function. Given 𝜈(𝜑, 𝜏) in the current period, we can represent 𝜈(𝜑′, 𝜏 ′) in the

subsequent period using the transition function in Lemma 8:

𝑇𝜈(𝜑′, 𝜏 ′) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑︀∞
𝜏=0

∫︀∞
𝜑𝐸(𝜏) 𝑍

(︁
𝜑′, 𝜏 ′

⃒⃒⃒
𝜑, 𝜏

)︁
𝑑𝜈(𝜑, 𝜏) for 𝜏 ′ ≥ 1 and 𝜏 ′ ̸= 𝑋;⎛⎜⎝ 𝜅(1 − 𝑑(𝜑, 𝜏))𝜈(𝜑0, 0)

+1 − 𝜅
∑︀∞
𝜏=0

∫︀∞
𝜑𝐸(𝜏) 𝐼(𝜑, 𝜏)𝑑𝜈(𝜑, 𝜏)

⎞⎟⎠ for (𝜑, 𝜏 ′) = (𝜑0, 0);

0 otherwise.

(24)

In Eq. (24), the density of any state 𝜑′, 𝜏 ′ in the subsequent future can be generally cal-

culated by counting all flows to that state. In the second line, we treat one exception of

the first line, which is the initial entry point 𝜑 = 𝜑0, 𝜏 = 0. The first component in the

second line captures the remaining mass of managers after the transition, and the second

component captures the mass of new managers who enter the economy to replace exiting

managers.

By definition, in a stationary equilibrium, the distribution of types is time-invariant.

That is, the density of state variables in the subsequent period should be equal to that in

the current period:

𝜈(𝜑′, 𝜏 ′) = 𝑇 [𝜈(𝜑′, 𝜏 ′)]. (25)

Next, we prove that a unique stationary distribution of the state variables exists. That
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is, for any given initial distribution, the equilibrium will converge to the stationary distri-

bution of the state variables.

Theorem 9. There exists a unique stationary distribution 𝜈 that solves Eq. (25).

Proof. See Appendix A.

4.4 Stationary Equilibrium

The steady state equilibrium is pinned down by the fractions of fund managers investing

in each investment opportunity (𝜇𝑆 , 𝜇𝐿). Because it is sufficient to use one of the two

(𝜇𝑆 +𝜇𝐿 = 1), we use 𝜇 ≡ 𝜇𝑆 , which is the fraction of managers investing in the short-term

opportunity, as the state variable. Let us define 𝑞𝑖(𝜑, 𝜏 ;𝜇) as the optimal size of investment

in investment opportunity 𝑖 given fund manager type 𝜑, 𝜏 and state variable 𝜇𝑆 . Likewise,

let 𝐼(𝜑, 𝜏 ;𝜇) be the exit choice that equals one if a fund optimal chooses to stay and zero

otherwise given 𝜑, 𝜏 and 𝜇. In a stationary equilibrium, the equilibrium mapping is given

by the fraction of fund managers investing in opportunity 𝑆 given 𝜇:

𝐻(𝜇) ≡
∑︀∞
𝜏=0

∫︀∞
𝜑𝐸(𝜏) 𝑞𝑆(𝜑, 𝜏 ;𝜇)𝑑𝜈(𝜑, 𝜏)∑︀∞

𝜏=0
∫︀∞
𝜑𝐸(𝜏) [𝑞𝑆(𝜑, 𝜏 ;𝜇) + 𝑞𝐿(𝜑, 𝜏 ;𝜇)] 𝑑𝜈(𝜑, 𝜏)

, (26)

where 𝒥 denotes the set of all fund managers. The fixed point of the mapping in Eq. (26)

solves the following equation:

𝐻(𝜇) = 𝜇. (27)

We denote by 𝜎(𝜑, 𝜏) the optimal investment decision of a fund with 𝜑, 𝜏 such that 𝜎 ∈

{𝑋,𝑆,𝐿} where 𝑋,𝑆,𝐿 stand for exit, short-term investment, and long-term investment,

respectively. Now, we define stationary equilibrium as follows:

Definition 10. A stationary equilibrium consists of the optimal investment decision 𝜎(𝜑, 𝜏),

optimal size 𝑞𝑖(𝜑, 𝜏), value function 𝑉 (𝜑, 𝜏), transition probabilities 𝑍
(︀
𝜑′, 𝜏 ′⃒⃒𝜑, 𝜏)︀, stationary

distribution 𝜈(𝜑, 𝜏), fraction of fund managers investing in short-term opportunity 𝜇 such

that

1. Value function 𝑉 (𝜑, 𝜏) solves the recursive problem in Eqs. (10)-(12);
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2. Transition probabilities 𝑍
(︀
𝜑′, 𝜏 ′⃒⃒𝜑, 𝜏)︀ are given by Eq. (24);

3. The stationary distribution solves the functional equation in Eq. (25);

4. The fraction of fund managers investing in short-term opportunity solves Eq. (27).

Focusing on the class of equilibria defined in Definition 10, we solve the equilibrium

numerically in the next section.

5 Main Findings and Empirical Tests

In this section, we solve and calibrate our theory model and evaluate its main predictions.

We then test those predictions empirically.

5.1 Parametric Model

We first numerically solve our stationary equilibrium model using several parametric as-

sumptions. For simplicity, we assume a cost function which is quadratic for each opportunity

𝑖 ∈ {𝑆,𝐿}:

𝐶(𝑞𝑡,𝑖) = 𝑎

2𝑞𝑡,𝑖
2, (28)

and a returns to scale function that is linear in 𝜇𝑡,𝑖:

𝑔𝑖(𝜇𝑡,𝑖) = 𝑏0,𝑖 + 𝑏1,𝑖𝜇𝑡,𝑖. (29)

Under these assumptions, we have the optimal investment amount 𝑞*
𝑖 and value added Π𝑖

for each opportunity 𝑖 ∈ {𝑆,𝐿} per period in Eqs. (13) and (16) as

𝑞*
𝑖 = 𝑑𝑖𝜑𝑔𝑖

𝑎
𝑎𝑛𝑑 Π𝑖 = (𝑑𝑖𝜑𝑔𝑖)2

2𝑎 , (30)

when the perceived skill 𝜑 is positive. When 𝜑 is negative, the fund stops operation, and

both 𝑞*
𝑖 and Π𝑖 become zero.

We assume a linear utility function of fund managers (as in Berk and Green [2004]) in
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our numerical analysis:25

𝑢(𝑤) = 𝑤. (31)

We summarized the parametric values of the model employed in our numerical analysis

in Appendix Table A1. Given the parameter values provided in the table, we can numerically

solve for the fixed point in Eq. (27).

We define each period 𝑡 as a quarter in our numerical analysis, and all dollar values

are in billions of dollars. Correspondingly, we pick 𝑑𝑆 = 0.4 and 𝑑𝐿 = 0.05 such that they

translate into the annual turnover of (0.4 × 4=) 1.6 for the high turnover strategy and

(0.05×4=) 0.2 for the low turnover strategy. These numbers are approximately the average

turnovers of high-turnover funds in turnover quintile 5 and low-turnover funds in turnover

quintiles 1 in our empirical analysis. We pick the average skill parameter of new entering

funds 𝜑0 = 0.02/4 and normalize the 𝑏0,𝐿 × 𝑑𝐿 = 1. Under these parameters, the quarterly

gross alpha of long-term investing on the first dollar (i.e., before the deteriorating effects of

both fund-level and opportunity-level decreasing returns to scale) is 0.5% per quarter (i.e.,

2% per year).26 We pick a higher gross alpha on the first dollar of 8% per year for short-term

investing (i.e. 𝑏0,𝑆 × 𝑑𝑆 = 4). We choose this higher number to ensure that we do not have

a lower return of short-term investing to start with, thus the lower return in equilibrium is

caused by a more fierce competition for short-term investing. We choose the prior precision

of talent 𝜑 as 𝛾 = 400 × 42 corresponding to a 5% standard deviation in annual gross alpha

before decreasing returns to scale. Our choice of 𝜑0 and 𝛾 are close to the 𝜑0 of 0.065 and

𝛾 of 277 per year in Berk and Green (2004). We adjust these two number slightly to match

the smaller average gross returns and return volatility in the data. We pick the precision

of idiosyncratic noise 𝜖 as 𝜔 = 300 × 42 to make sure the learning of fund skill is largely

25Alternatively, we could assume a bounded concave utility function as 𝑢(𝑤) =
[︁
�̄� − �̄�

1+ 1
�̄�

𝑤

]︁
to guarantee

the existence of the value function using the standard Banach fixed point theorem (see the proof of Theorem 3
in Appendix A). Parameter �̄� is the upper bound of the utility function, which is set to be an arbitrarily
large number in our numerical analysis. Note that the level of utility at the given level of 𝑤 converges to
the risk-neutral one 𝑢(𝑤) = 𝑤 as �̄� diverges to infinity, so using this bounded concave utility function does
not change our numerical result.

26This quarterly gross alpha of 0.5% is derived by taking the expectation of the first term of Eq. (3), and
substituting the parameter values 𝜑0 = 0.02/4, 𝑏0,𝐿 × 𝑑𝐿 = 1, and 𝑏1,𝐿 = 0 into this equation.
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completed within 25 years, which is similar to the data in Figure 4.27 We pick a quarterly

survival rate 𝜅 = 0.95 for the random exiting of fund managers, and we set the reservation

utility 𝑢0 = 0.02, so the annual survival rates of high- and low- turnover funds are close

to those observed in the data (as in Figure 6).28 We follow Pastor, Stambaugh and Taylor

(2015) and Zhu (2018) in estimating the decreasing returns to scale (DRS) parameters at

the fund level and investment opportunities level jointly. According to our estimates, we get

a fund-level DRS parameter 𝑎 = .00503, and parameters 𝑏1,𝑆 = −61.92 and 𝑏1,𝐿 = −14.80

in the DRS functions of short- and long- term investment opportunities, 𝑔𝑖 (𝜇𝑡,𝑖). More

details about the estimation of DRS parameters are provided in Section A.2 and Table A2

in the Appendix.

5.2 Data

For empirical tests, we obtain mutual fund data from the Center for Research in Secu-

rity Prices (CRSP) survivor-bias-free database and the fund manager tenure data from

Morningstar Direct. Following the data cleaning process of Kacperczyk, Sialm, and Zheng

(2008), we remove bond, money market, balanced, index, ETFs/ENFs, international, and

sector funds. We merge funds with multiple share classes into a single fund. We end up

with a sample of 3,390 actively managed US equity mutual funds from 1961 to 2019 that

only invest in US domestic equities.

Table 1 reports the summary statistics for our sample of mutual funds. Fund size

and value added are adjusted by inflation to January 1, 2020 dollars. Our sample has an

average fund size of 1,374 million dollars and an average turnover of 81% per year. The

average manager tenure is 5.7 years and the average age of a fund is 12.9 years. Manager

tenure is the number of years a manager has worked in a given fund. If a fund is team
27Note that 25 years corresponds to 40 short-term investment realizations. After all, the probability that

a short-term investment opportunity realizes in a quarter is 0.4, so 40 realizations on average take 40/0.4 =
100 quarters, which is 100/4 = 25 years.

28A reservation utility of 𝑢0 = 0.02 corresponds to a perpetuity of receiving one million dollars per quarter
under the survival rate 𝜅 = 0.95 (0.001/(1-0.95)=0.02 in billion dollars). We show later in Panel B1 of
Appendix Figure A2 that the value of the real growth option of new managers almost stays the same when
𝑢0 = 0. Therefore, we are conservative in our estimate of the value of the real growth option by choosing
𝑢0 = 0.02. Panel B1 of Appendix Figure A2 further shows that increasing 𝑢0 to 0.18 does not have a
substantial effect on this option value either.
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managed, we use the average manager tenure of all its managers for our analyses. The

results are similar when using the highest or lowest manager tenure of a fund’s managers

for our analyses. The value added of a fund under both the CAPM model and the Vanguard

benchmarks are positive, which are consistent with the numbers in Berk and van Binsbergen

(2015). Since the asset pricing literature is still debating on whether pricing factors such

as value and momentum are risk factors or anomalies, we use the CAPM model and the

four Vanguard US index funds including S&P 500 Index (VFINX), Extended Market Index

(VEXMX), Small-Cap Index (NAESX), and Mid-Cap Index (VIMSX) in our benchmark

analyses. Our main findings still hold after including value and momentum factors or the

factors corresponding to the Vanguard index funds.

5.3 New Mechanism: Investor Learning of High-/Low- Turnover Funds

We first use the flow-performance sensitivity as an empirical measure of learning, as in Berk

and Green (2004), to show that investing in short-term opportunities speeds up investors’

learning of funds’ skill. In particular, we test the prediction in Lemma 2 that the flow-

performance sensitivity of high-turnover funds decreases faster with an increase of manager

tenure than that of low-turnover funds.

Following Pool, Sialm, and Stefanescu (2016) and Berk and van Binsbergen (2016), we

estimate the fund flows of mutual fund 𝑗 in quarter 𝑡 as

𝐹𝑙𝑜𝑤𝑗,𝑡 = 𝑇𝑁𝐴𝑗,𝑡 − 𝑇𝑁𝐴𝑗,𝑡−1 * (1 +𝑅𝑗,𝑡)
𝑇𝑁𝐴𝑗,𝑡−1 * (1 +𝑅𝑗,𝑡)

(32)

where 𝑇𝑁𝐴𝑗,𝑡 is the CRSP TNA value for fund 𝑗 at the end of quarter 𝑡, and 𝑅𝑗,𝑡 is the

quarterly return of fund 𝑗 during quarter 𝑡. When all the money of a fund is withdrawn by

its investor (𝑇𝑁𝐴𝑗,𝑡 = 0), this measure of fund flow is -100%. Following Huang, Wei, and

Yan (2007), we winsorize the fund flows at the 2.5 percent level at both tails to avoid errors

associated with mutual fund mergers and splits in the CRSP mutual fund database.

We then estimate the flow-performance sensitivity (FPS) coefficient 𝛽𝑓 by running the

following regression.

𝐹𝑙𝑜𝑤𝑗,𝑡 = 𝛽𝑓 *𝑅𝑒𝑡 𝑅𝑎𝑛𝑘𝑗,𝑡−1 + 𝛽𝑐 * 𝑙𝑛(𝑇𝑁𝐴)𝑗,𝑡−1 + 𝜐𝑡 + 𝜀𝑗,𝑡, (33)
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where 𝑅𝑒𝑡 𝑅𝑎𝑛𝑘 is the return rank from 0 (the lowest) to 1 (the highest) based on past

quarter benchmark-adjusted returns.29 We use CAPM as the benchmark in Panel A of

Figure 1 and four Vanguard index funds in Panel B. Variable 𝑙𝑛(𝑇𝑁𝐴) is the ln value of

the fund’s total net assets at the end of the last quarter, as a control variable. Similar

to Barber, Huang, and Odean (2016), we run this regression nine times for funds with a

manager tenure shorter than two to ten years separately, and for fund turnover quintiles

1 and 5 separately.30 We exclude funds with less than one year of manager tenure from

this analysis because of the large noise in their quarterly estimates of the flow-performance

sensitivity. An FPS coefficient 𝛽 of 0.10 indicates that the quarterly fund flow is 10% of fund

TNA higher for the fund with the highest last-quarter return (𝑅𝑒𝑡 𝑅𝑎𝑛𝑘 = 1) compared to

the fund with the lowest (𝑅𝑒𝑡 𝑅𝑎𝑛𝑘 = 0).

As shown in Panel A of Figure 1, the flow-performance sensitivity of high-turnover funds

(Q5) decreases from 0.108 for funds with a manager tenure of two years to about 0.082 for

funds with a manager tenure of less than ten years on average. This decrease is substantially

larger than the decrease of low-turnover funds (Q1) from 0.094 to 0.079, supporting our

model prediction that high-turnover strategies speed up investors’ learning about fund skill.

Further, the flow-performance sensitivity of high-turnover funds is on average higher than

that of low-turnover funds, especially for new fund managers, as predicted in Lemma 2.

The results are similar in Panel B, where we use Vanguard index funds as the benchmark.

Next, we formally test the predictions of Lemma 2 using the following regression anal-

ysis. We regress quarterly fund flows on funds’ return ranks in the past quarter, year, and
29Since fund flows are more sensitive to return ranks than returns (as documented in Di Maggio, Franzoni,

Kogan, and Xing [2023] and Fricke, Jank, and Wilke [2023]), we use return ranks for the analysis of flow-
performance sensitivity to reduce the noises.

30Because the number of funds in the sample decreases with an increase of manager tenure, the estimates
of the FPS coefficients are noisier for funds with larger manager tenure. Therefore, we estimate the FPS
coefficient of funds with a manager tenure shorter than two, three, ... ten, years respectively in Figure 1. A
formal regression analysis using the manager tenure of each fund (as in Eq (34)) is reported in Table 2 and
Appendix Table A3.
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three years, as well as their interactions with fund turnover and manager tenure:

𝐹𝑙𝑜𝑤𝑗,𝑡 =𝛽1 *𝑅𝑒𝑡 𝑅𝑎𝑛𝑘𝑗,𝑡−1 × 𝑇𝑒𝑛𝑢𝑟𝑒𝑗,𝑡−1 × 𝑇𝑢𝑟𝑛𝑜𝑣𝑒𝑟𝑗,𝑡−1 (34)

+ 𝛽2 *𝑅𝑒𝑡 𝑅𝑎𝑛𝑘𝑗,𝑡−1 × 𝑇𝑢𝑟𝑛𝑜𝑣𝑒𝑟𝑗,𝑡−1 + 𝛾1 * 𝑇𝑢𝑟𝑛𝑜𝑣𝑒𝑟𝑗,𝑡−1

+ 𝛽3 *𝑅𝑒𝑡 𝑅𝑎𝑛𝑘𝑗,𝑡−1 × 𝑇𝑒𝑛𝑢𝑟𝑒𝑗,𝑡−1 + 𝛾2 * 𝑇𝑒𝑛𝑢𝑟𝑒𝑗,𝑡−1

+ 𝛽4 *𝑅𝑒𝑡 𝑅𝑎𝑛𝑘 × 𝑙𝑛(𝑇𝑁𝐴)𝑗,𝑡−1 + 𝛾3 * 𝑙𝑛(𝑇𝑁𝐴)𝑗,𝑡−1

+ 𝜂 *𝑅𝑒𝑡 𝑅𝑎𝑛𝑘𝑗,𝑡−1 + 𝜐𝑡 + 𝜀𝑗,𝑡.

Each quarter we rank all funds based on their past quarter (year or 3-year) returns and

assign them a continuous rank ranging from zero (worst) to one (best). 𝑅𝑒𝑡 𝑅𝑎𝑛𝑘 is the

return rank, and 𝑇𝑒𝑛𝑢𝑟𝑒 is the number of years a manager has worked in a given fund.

All independent variables (except 𝑅𝑒𝑡 𝑅𝑎𝑛𝑘) are standardized to a mean of zero and a

standard deviation of one. We use CAPM as the benchmark in Table 2 and four Vanguard

index funds in Appendix Table A3. The coefficient 𝛽1 should be significantly negative if

high-turnover strategies speed up investors’ learning of fund skill as our model predicts.

Indeed, Table 2 shows that coefficient 𝛽1 is significantly negative in all three settings,

and this effect is stronger for the flow-performance sensitivities to last quarter’s return and

last year’s return than to the last three-year return. The coefficient of 𝑅𝑒𝑡𝑅𝑎𝑛𝑘 in column

(1) reports a quarterly flow-performance sensitivity of 7.4%, that is, the quarterly fund flow

is 7.4% of fund TNA higher for the fund with the highest last-quarter return (𝑅𝑒𝑡𝑅𝑎𝑛𝑘 = 1)

compared to the fund with the lowest (𝑅𝑒𝑡𝑅𝑎𝑛𝑘 = 0), and this flow-performance sensitivity

is 11.2% and 10.1% for last-year’s return and the last-3-year’s return ranks respectively as

in column (2) and (3). The coefficient of 𝑅𝑒𝑡 𝑅𝑎𝑛𝑘 × 𝑇𝑒𝑛𝑢𝑟𝑒 × 𝑇𝑢𝑟𝑛𝑜𝑣𝑒𝑟 in column

(1) reports that the decrease of flow-performance sensitivity with a one-standard-deviation

increase in manager tenure (5.1 years as reported in Table 1) is -0.75% larger for a fund

with an annual turnover that is one-standard-deviation (82% per year) higher. Therefore

turnover has a substantial effect on the speed by which the flow-performance sensitivity

decreases in manager tenure (i.e., the speed of investors’ learning of fund skill). Moreover,

the coefficient of 𝑅𝑒𝑡 𝑅𝑎𝑛𝑘 × 𝑇𝑢𝑟𝑛𝑜𝑣𝑒𝑟 in column (1) reports that this flow-performance

sensitivity is 0.72% higher for a fund with an annual turnover that is one-standard-deviation
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higher. Consistent with our model prediction (as in Berk and Green [2004]), we find that

manager tenure, which is positively correlated with fund age, has a negative effect on the

flow-performance sensitivity. We control for quarterly fixed effects and cluster the standard

errors per quarter since fund flows are positively correlated in the same quarter and we are

interested in the sensitivity of fund flows to the relative performance ranks of funds. The

results are similar without controlling for quarterly fixed effects, and the results are similar

in Appendix Table A3, where we use Vanguard index funds as the benchmark.

5.4 The Value of The Real Growth Option

In this section, we investigate the value of the real growth option (defined in Eq. (22)) as

a function of the two state variables: perceived skill 𝜑 and the number of realizations 𝜏 .

Panel A of Figure 2 plots the value of the real growth option (the LHS of Eq. (18)) in

colored solid lines against the difference in current-period payoffs between long- and short

-term investing (the RHS of Eq. (18)) in gray dashed line as a function of perceived skill 𝜑.

Fund managers choose the short-term investment option if and only if the value of the real

growth option is higher than the difference in current-period payoffs (gray dashed line). As

shown in Panel A of Figure 2, the value of the real growth option is large and above the

gray dashed line for most new fund managers (i.e., with 𝜏 = 0).31 As a result, they would

prefer short-term to long-term investing.

To have a closer look at the value of the real growth option for a new fund manager and

an average fund manager in the industry, we add two vertical dotted lines for the levels of

perceived skill of these two types of managers (with 𝜑 = 0.005 and 0.0175 correspondingly)

in Panel A. We zoom in on this region for new and average manager in Panel B1 of Figure 2.

For a new manager (the intersection of blue solid and dotted lines with 𝜑=0.005 and 𝜏 = 0),

the present value of this real growth option is about $4.9 million, whereas the additional

value added from investing in long- versus short- term strategies is only (0.57 - 0.09 =)

$0.48 million. For an average fund manager in our sample (the intersection of the orange

solid and dotted lines with 𝜑=0.0175 and 𝜏 = 12), the value of this option is about $3.5
31More than 99% of fund managers have a perceived skill 𝜑 < 0.045 in our sample.
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million. An average manager would choose long-term strategies, since this option value is

smaller than the additional value added from investing in long- versus short- term strategies

of (7.0 - 1.1 =) $5.9 million.32 This additional value added is larger for an average manager

than for a new manager because of a higher perceived skill. For completeness, we also plot

in Panel B2 of Figure 2 the option values of new and average managers as a function of

the number of realizations 𝜏 separately. The option values of new and average managers

(intersection points with vertical dotted lines) in Panel B2 coincide with Panel B1.

Similar to a call option, whose value increases with the uncertainty in the future stock

price, the value of the real growth option increases with the uncertainty about a fund

manager’s skill, which relates to the fund manager’s future payoffs (continuation value).

The higher this uncertainty is, the larger the value of the real growth option becomes.

Since the uncertainty regarding a manager’s skill decreases as the number of realizations

𝜏 increases (as in Eqs. (5) and (12)), the value of the real growth option decreases as 𝜏

increases, as shown in Panel A and Panel B2 of Figure 2.

Panel A of Figure 2 shows that the value of the real growth option first increases with

perceived skill 𝜑 until it matches the difference in payoffs between long- and short- term

strategies (Π𝐿−Π𝑆), and it decreases thereafter. Intuitively, the growth option is less useful

to fund managers who are either close to unskilled, or skilled enough to shift to long-term

strategies for a larger payoff. Our model illustrates this intuition as follows. Since a fund

manager’s payoff (value added) increases more than linearly with the perceived skill 𝜑 (as in

Eq. (16)),33 a higher current perceived skill leads to a larger variation in the fund manager’s

future payoffs (continuation value). The decrease in payoff in case of bad performance is

muted by the option to exit. As a result, the value of the real growth option first increases

with the perceived skill 𝜑. When the perceived skill 𝜑 is high enough to make the difference

in payoffs between long- and short -term investing (the RHS of Eq. (18) in gray dashed
32An average fund manager of all surviving funds in our data sample has a fund size of $1.4 billion

(𝜑=0.0183) and a manager tenure of 5.7 years, that is (𝜏 = 5.7 × 4 𝑞𝑢𝑎𝑟𝑡𝑒𝑟𝑠 × 0.5 =) 11.4 realizations on
average if investing in the short-term strategy (𝑑𝑠 = 0.5). To be conservative, we choose the closest grid
with a lower perceived skill (𝜑 = 0.0175) and a higher number of realizations (𝜏 = 12) for our estimation of
the value of the real growth option.

33If we assume that the cost function is quadratic and the utility function is linear as in Eqs. (28) and (31)
in our parametric model, the fund manager’s payoff Π𝑖 = (𝑑𝑖𝜑𝑔𝑖)2/(2𝑎) as in Eq (30) increases quadratically
with perceived skill 𝜑.
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line in Panel A of Figure 2) larger than this option value, the fund manager will optimally

choose to invest in long-term strategies going forward. Since long-term strategies are less

likely to realize (i.e., 𝑑𝐿 < 𝑑𝑆) compared to short-term strategies, the variation in the

fund manager’s future payoffs (continuation value) becomes substantially smaller once she

shifts to long-term investing. Therefore, the value of the real growth option reverses once

it reaches the gray dashed line. As the perceived skill continues to increase, the option to

exit becomes even less likely to be exercised, which leads to a further decrease in this option

value.

Finally, it is interesting to note that new fund managers with negative perceived skill

(i.e., out-of-the-money managers with 𝜑 < 0) still have a positive value from the real growth

option, since they have a chance of proving themselves to be skilled in the future, whereas

older managers with negative perceived skill have less value from the real growth option as

the residual uncertainty regarding their skill is so much lower.

In Appendix Section A.3, we perform sensitivity analyses for the value of the real growth

option with respect to the key parameters used in our calibration (including probability 𝑑𝑆 ,

the precision of the prior 𝛾, the precision of the signal 𝜔, reservation utility 𝑢0, survival

rate 𝜅, fund-level DRS parameter 𝑎, investment-opportunity-level DRS parameters 𝑏1,𝑆 and

𝑏1,𝐿, as well as discount rate 𝛽). We show that, for new fund managers, this option value

from short-term strategies remains substantially larger than the higher payoff given by long-

term strategies under most parameter values. As a result, new fund managers are better off

choosing short-term strategies. The reason is that, for a new fund manager with a perceived

skill as low as 𝜑0 = 0.005, the payoff from investing in long-term strategies immediately is

small compared to the substantially larger payoff from revealing her skill faster.

5.5 Main Finding 1: Optimal Investment

Theorem 4 shows that fund managers choose to exit when their perceived talents are suf-

ficiently low, and the threshold becomes higher as fund managers get older because their

growth potential becomes smaller. Also, Theorem 5 shows that, conditioning on continuing

their operations, fund managers choose to invest short-term when their perceived talents
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are sufficiently low, the threshold becomes lower as fund managers get older because their

growth potential becomes smaller. These findings are driven by the larger value of the exit

option attached to short-term investment strategies compared to long-term ones. That is,

the call-option-like value becomes more sensitive to the managers’ choices as the option is

closer to at-the-money (nearer to the exercise boundary, implying low perceived talent) or

the volatility is higher (i.e., for new fund managers).

Figure 3 shows the area of optimal choice in terms of the state variables. As the trade-

off demonstrated in Eq. (18), funds with new managers and small size are more likely to

invest in short-term opportunities to speed up investors’ learning of their talents and, thus,

increase the value of their real growth option, while sacrificing some of their current-period

profits. On the other hand, because the information about old fund managers’ talents is

more precise and the growth potential of large funds is smaller, this real growth option is

less important for those older managers. As a result, funds with old managers and large

size are more likely to choose long-term opportunities which prioritize current-period value

added to the value of this real growth option.

In Figure 4, we show that the actual distribution of fund size and manager tenure of

high- and low- turnover funds in the data resembles our model’s prediction in Figure 3.

Funds with new managers and small size (at the lower left corner) are more likely to choose

high-turnover strategies, while funds with old managers and large size (at the top right

corner) are more likely to choose low-turnover strategies.

5.5.1 Choice of Turnover

To further test the prediction of Theorem 5, we plot the average fund turnover by manager

tenure for each fund size quintile separately in Figure 5 to look into the correlation between

manager tenure and fund turnover controlling for fund size. It shows that fund turnover

decreases almost monotonically with the increase of manager tenure for fund size quintiles

2 to 5. We formally test this correlation using the regression below:

𝑇𝑢𝑟𝑛𝑜𝑣𝑒𝑟𝑗,𝑦 = 𝛽 * 𝑇𝑒𝑛𝑢𝑟𝑒𝑗,𝑦 + 𝛾 * 𝑙𝑛(𝑇𝑁𝐴)𝑗,𝑦−1 + 𝜐𝑦 + 𝜀𝑗,𝑦, (35)
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where 𝑇𝑢𝑟𝑛𝑜𝑣𝑒𝑟𝑗,𝑦 is the turnover of fund 𝑗 in year 𝑦, and 𝑇𝑒𝑛𝑢𝑟𝑒𝑗,𝑦 is the (average) man-

ager tenure. We include year fixed effects in our benchmark specification since there might

be common variation in fund turnover across funds over time. Since fund turnover is highly

persistent over time (as shown in Van Binsbergen, Han, Ruan, and Xing [2022]), we cluster

the robust standard errors at the fund level. We find that, on average, annual fund turnover

is 1.9% lower for a manager with one more year of experience (as reported in Panel A of

Table 3). Since the standard deviation of manager tenure is 5.1 years as reported in Table 1,

a one standard deviation increase in manager tenure on average leads to a 9.7% (1.9%*5.1)

decrease in annual fund turnover. This negative correlation is statistically significant for

all fund size quintiles, except quintile 1. This is because small funds always have the in-

centive to choose short-term opportunities which allows faster updating of investors’ beliefs

(as shown in Figure 3). Further, the correlation between fund size and turnover is also

significantly negative which is consistent with the prediction of our model. Our results are

also robust to including fund fixed effects (setting [2] of Panel B), which confirms our model

prediction that funds switch from short- to long- term opportunities as they get older.

Brown, Harlow, and Starks (1996) and Chevalier and Ellison (1997) argue that younger

fund managers have a higher propensity to take risk. To distinguish our story (that new fund

managers use high-turnover strategies to speed up the learning) from this risk-taking story,

we measure the fund’s portfolio risk by the standard deviation of the fund’s monthly excess

return per year. We regress this measure of portfolio risk on manager tenure controlling for

fund turnover in the same year, and report the result in setting (1) of Panel B. The results

show that the correlation between manager tenure and portfolio risk is indistinguishable

from zero after controlling for fund turnover, suggesting that fund managers are not simply

using high-turnover strategies to increase their risk taking. Consistently, we find that the

relation between fund turnover and manager tenure remains the same after including the

return volatility as a control variable (as reported in setting [4] of Panel B).

Since fund age and manager tenure are positively correlated (with a correlation of

0.347), one may wonder whether high-turnover strategies are associated with new funds

rather than new managers. We explore this by including both fund age and manager tenure
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in the same regression in setting (3) of Panel B and find that the effect of manager tenure

remains the same while the effect of fund age is close to zero.

In addition, we test Theorem 4 formally using a probit regression. The results are

reported in Section A.4 in the Online Appendix. As predicted in Theorem 4, we find

that the chance of a manager exiting decreases significantly with an increase in fund size,

especially for older managers with longer tenure. That is, older managers with a small fund

size are more likely to exit.

5.6 Main Finding 2: Stationary Distribution

Figure 7 shows the stationary distribution of funds as a function of perceived skill and

manager tenure for short-term and long-term funds separately. We calculate the density

of funds at each manager tenure by aggregating the densities of funds for all number of

payoff realizations (𝜏) at that manager tenure. The survival rates in Figure 7 largely match

the average manager survival rates in Figure 6. Theorem 9 guarantees the existence and

uniqueness of such a distribution. One can observe gradual attrition of fund managers

for both voluntary and random exits. As a consequence of voluntary exits, the density of

funds with small fund size (low perceived skill) decreases substantially with an increase in

manager tenure. Since new and small fund managers are more likely to choose short-term

strategies, as shown in Figure 3, the stationary distribution features a large number of small

and high-turnover funds. It is worth noting that there is a one-to-one mapping between

fund size and perceived skill in our model as in Berk and Green (2004).

Together with voluntary exiting, fast skill revelation of investing in the short-term helps

to filter out the unskilled managers and keep the skilled ones in the industry. As shown

in Panel A of Figure 8, the stationary distribution of true skill, which is the distribution

of surviving funds, naturally contains better skilled fund managers compared to the initial

distribution. This rightward shift of skill distribution main comes from funds which have

shifted from short-term to long-term investing.

Figure 9 plots the steady state distributions of short-term and long-term funds for new

and old fund managers separately. Panel A plots the distribution for new fund managers
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(with one quarter of manager tenure), and Panel B plots it for old fund managers (with 40

quarters of manager tenure). As shown in Panel A, most new fund managers choose short-

term opportunities to increase the value of the real growth option. Only a small group

of funds who have proved their skills through extraordinary past performance (because

of either luck or skill) choose long-term opportunities. For old fund managers, in Panel

B, most of them choose long-term opportunities for higher current-period value added.

Only a small fraction of old fund managers with low perceived skills choose high-turnover

strategies. Because of the high chance of managers exiting (as documented in Section A.4),

the mutual fund industry features a large number of new fund managers choosing high-

turnover strategies and a small number of old managers choosing low-turnover strategies.

Next, we compare the distribution of fund sizes from actual mutual fund data with

the predicted distribution from our theory. Figure 10 plots the distribution of fund size

from actual mutual fund data, for high-turnover funds (quintile 5) and low-turnover funds

(quintile 1) separately and for new and old managers separately. The distributions in Panel

A for new managers (with tenure <= 7 years) resemble the distributions in Panel A of Figure

9, where the density of high-turnover funds is higher than the density of low-turnover funds.

The distributions in Panel B for old managers (with tenure > 7 years) also resemble the

distributions in Panel B of Figure 9, where the density of low-turnover funds is higher than

the density of high-turnover funds. The average fund size of high-turnover funds is smaller

than low-turnover funds in both panels. The density of high-turnover funds in Panel B is

substantially lower than that in Panel A because of their managers’ lower survival rates.

We also look into the fraction of high-turnover and low-turnover funds for new and old

managers separately in Appendix Figure A3. We plot the number of funds and the total

net assets for each fund turnover quintile and by manager tenure. As shown in Panel A, for

high-turnover funds, the number of new managers (with tenure <= 7 years) is about three

times the number of old managers (with tenure > 7 years); while for low-turnover funds,

new managers are only slightly more than old managers. However, Panel B shows that,

for low-turnover funds, the total amount of assets managed by old managers is more than

twice the amount managed by new managers, and low-turnover funds manage substantially
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more assets than high-turnover funds do. These results are consistent with our conjecture

that a main function/value added of the large number of small and high-turnover funds is

to select skilled managers for large low-turnover funds, which add the majority of value for

the mutual fund industry. There are two ways in which a manager of a small high-turnover

fund can become a manager of a large low-turnover fund: (1) investors reward the fund with

more capital and the fund becomes large and switches to a low-turnover strategy, and (2)

the manager is hired (or reassigned by the fund family) to manage a large and low-turnover

fund.

5.7 Main Finding 3: Equilibrium Value Added

Our model (Corollary 7) predicts that the average value added of funds investing in long-

term opportunities is larger than that of funds investing in short-term opportunities, con-

trolling for the number of believe updates. Figure 11 shows the average value added, value

from real growth option, and the fraction of AUM in the steady state of our model for

investments in short-term and long-term opportunities separately. Under the stationary

distribution in our model, there are many new and relatively unskilled funds in the econ-

omy. They invest in short-term opportunities for the value of the real growth option, which

drives the value added of short-term opportunities down to a level lower than that of long-

term opportunities. As a result, old and skilled fund managers optimally choose to invest in

long-term opportunities. The average value added of investing in short-term opportunities

is small because of both the competition for the value of the real growth option and the

lower skill level of new managers, whereas the average value added of investing in long-

term opportunities is large mainly because of higher average skill. Therefore, investing in

long-term opportunities adds more value than investing in short term opportunities does in

equilibrium. Because short term opportunities offer a large value from real growth option,

fund managers are willing to accept lower current value added for short term opportunities.

As reported in the left panel of Figure 11, the value of short-term strategies is mainly from

the value from real growth option ($3.7 million per quarter) represented by the green bar

instead of payoffs from the short-term opportunities ($0.5 million per quarter) represented
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by the blue bar. Finally, competition makes short term opportunities less profitable.

Figure 12 plots the average value added for each fund turnover quintile by manager

tenure. We sort funds into turnover quintiles every year based on their turnover ratios in

the CRSP mutual fund database. This figure reports the value added calculated based on the

CAPM, and Appendix Figure A4 reports similar results based on the Vanguard benchmark

composed by four US Vanguard Index funds (including S&P 500 Index (VFINX), Extended

Market Index (VEXMX), Small-Cap Index (NAESX), and Mid-Cap Index (VIMSX)). As

our model predicts, the value added of high-turnover funds (negative and close to zero) is

substantially smaller than the value added of low-turnover funds. This is because short-term

opportunities offer higher future growth options, making new and small fund managers more

willing to accept lower current value added in exchange for the potential growth of future

values. As a consequence, the value added of low-turnover funds are mostly attributed to

old and skilled managers as Figure 12 shows. The value added of relatively low-turnover

funds (quintile 1 and 2) managed by old managers are significantly positive under both the

CAPM and Vanguard benchmarks under the 10% significant level. The point estimate of

value added of high-turnover funds (quintile 4 and 5) managed by new and old managers

are negative, though only significantly so for funds in quintile 4 that are managed by old

managers.

6 Conclusion

In our paper, we use the mutual fund industry as a laboratory to investigate the value of

real options in labor market settings and find that they are of first order importance in

explaining optimal career choice and compensation. The reason why real options play such

an important role in our setting is that the employee has a choice of tasks that influences

the speed by which investors and the firm management learn about the employee’s skill.

Our model shows that a strategy (such as short-term investment) accelerating the rev-

elation of an employee’s skill increases his growth potential, while the potentially larger

downside risk of this choice can be effectively attenuated by the possibility to exit. We doc-

ument that the value of the real growth option (the value of a higher learning speed) is large
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for new employees. As a result, a large number of new fund managers exploit the value of

this real growth option by investing in short-term opportunities. As the competition among

new fund managers reduces value added from short-term opportunities, a small number of

old skilled fund managers optimally choose to extract value from long-term opportunities

instead. Lastly, long-term investing on average adds more value than short term investing

does in equilibrium. Because short term opportunities offer a large value through a higher

learning speed, fund managers are willing to accept lower current value added for short

term opportunities. Competition makes short term opportunities less profitable (i.e., prices

are more efficient). As a result, the value of high-turnover (short-term) strategies is mainly

from speeding up the learning of new fund managers’ skills instead of extracting value from

the short-term opportunities. We empirically confirm our model predictions using half a

century of US mutual fund data.

Our paper focuses on the value of an option to learn to employees. A promising future

direction is to investigate how this option to learn by employees affects the welfare of the

consumers of the firm. A firm’s role in optimally allocating real options to its employees

is also of great importance. In the mutual fund context, the question becomes how should

a fund management firm optimally match high-turnover funds with fund managers. Fur-

thermore, future research could focus on other industries where the speed of learning and

skill revelation play an important role in resource allocations. For example, practitioners

in law may choose short-term and less important cases earlier in their career for learning,

and shift to more important cases later for skill revelation. New surgeons may start with

simpler and less risky surgeries for practicing.
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Panel A: Flow-Performance Sensitivity Based on the CAPM
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Panel B: Flow-Performance Sensitivity Based on the Vanguard Benchmarks
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Figure 1: Decay of Flow-Performance Sensitivity over Manager Tenure by Fund Turnover

This figure plots flow-performance sensitivity (FPS) coefficient by manager tenure for fund turnover
quintile 1 and 5 separately. The FPS coefficient 𝛽 is estimated by running the following regression
for funds with a manager tenure shorter than 2 to 10 years separately, and for fund turnover quintile
1 and 5 separately: 𝐹𝑙𝑜𝑤𝑗,𝑡 = 𝛽 * 𝑅𝑒𝑡 𝑅𝑎𝑛𝑘𝑗,𝑡−1 + 𝛽𝑐 * 𝑙𝑛(𝑇𝑁𝐴)𝑗,𝑡−1 + 𝜐𝑡 + 𝜀𝑗,𝑡, where 𝑅𝑒𝑡 𝑅𝑎𝑛𝑘
is the return rank from 0 (the lowest) to 1 (the highest) based on past quarter benchmark-adjusted
returns. We use CAPM as the benchmark in Panel A and four Vanguard index funds in Panel B.
𝑙𝑛(𝑇𝑁𝐴) is the ln value of the fund’s total net asset at the end of last quarter as a control variable.
Manager tenure is the number of years a manager has worked in a given fund. If a fund is team
managed, we use the average manager tenures of all its managers for our analysis. We sort funds
into turnover quintiles every year based on their last-year turnover ratios in CRSP mutual fund
database.
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Panel A: Entire Distribution

Panel B1 & B2: New Manager and Average Manager

Figure 2: Value of The Real Growth Option

This figure plots the value of the real growth option as a function of perceived skill and number of
realizations. The value of the real growth option is defined as the left hand side (LHS) of Eq.(18):

(𝑑𝑆 − 𝑑𝐿)𝜅
{︁

E
[︁
max

{︁
𝑉 (𝜑′, 𝜏 + 1), 𝑢0

}︁ ⃒⃒⃒
𝜑, 𝜏

]︁
− 𝑉 (𝜑, 𝜏)

}︁
> Π𝐿(𝜑) − Π𝑆(𝜑).

It represents the incremental continuation value from a faster learning speed of short-term investing.
Panel A plots this option value for the entire distribution of perceived skill 𝜑 and for managers
with 𝜏 = 0, 2, and 12 realizations separately. The gray dashed line is the right hand side (RHS) of
Eq.(18), which is the difference in current-period payoffs between investing in long- vs. short- term
opportunities. Panel B1 (left) zooms in the region for a new manager (blue) with 𝜑 = 0.005 (blue
dotted line) and 𝜏 = 0, and for an average manager (orange) with 𝜑 = 0.0175 (orange dotted line)
and 𝜏 = 12. Panel B2 (right) is as a function of the number of realizations 𝜏 .
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Figure 3: Optimal Choice by Perceived Skill and the Number of Belief Updates

Exit

Short-term

Long-term

Figure 4: Scatter Plot of Manager Tenure and Total Net Assets by Fund Turnover
This figure shows the scatter plot of manager tenure versus the ln value of funds’ total net assets
for low-turnover funds (quintile 1) and high-turnover funds (quintile 5) separately. Manager tenure
is the number of years a manager has worked in a given fund. If a fund is team managed, we use
the average manager tenures of all its managers for our analysis.
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Figure 5: Fund Turnover by Manager Tenure and Fund Size Quintiles

This figure plots the average fund turnover by manager tenure for each fund size quintile separately.
Manager tenure is the number of years a manager has worked in a given fund. If a fund is team
managed, we use the average manager tenures of all its managers for our analysis. Every quarter,
we sort funds into fund size quintiles based on their total net assets at the end of last quarter.
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Figure 6: Fund Survival Rate by Fund Turnover and Manager Tenure

This figure plots the cumulative survival rates by manager tenure for fund turnover quintile 1 and 5
separately. Specifically, it shows the probability that a fund-manager combination survives more than
𝑛 (1-10) years conditional on it stays in turnover quintile 1 or 5. Manager tenure is the (average)
number of years a manager(s) has (have) worked in a given fund. Cumulative survival rates are
calculated based on the survival rates for each manager tenure reported in Appendix Table A4.
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Figure 7: Stationary Distribution of Perceived Skill and Manager Tenure in the Model

This figure plots the distribution of perceived skill and manager tenure for short-term (blue) and
long-term (orange) funds separately. All funds with at least one realization are included.

Panel A: All Funds Panel B: Short- and Long- Term Funds

Figure 8: Stationary Distribution of True Skill under the Parametric Model

This figure plots the distribution of true talents for surviving funds in their steady state distribution
(solid lines) compared with the initial distribution (dashed lines). Panel A is for all funds, and Panel
B is for short-term (blue line) and long-term (orange line) funds separately.
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Panel A: New Funds (1 quarter) Panel B: Old Funds (40 quarters)

Figure 9: Distribution of Perceived Skill by Investment Horizon and Manager Tenure

This figure plots the distribution of perceived skill for short-term and long-term funds separately
and for new and old managers separately. Panel A is for new fund managers with one quarter of
manager tenure, and Panel B is for old fund managers with 40 quarters of manager tenure.

Panel A: Manager Tenure <= 7 Years Panel B: Manager Tenure > 7 Years

Figure 10: Distribution of Fund Size by Turnover and Manager Tenure: New (<= 7 Years)
vs Old (> 7 Years)

This figure plots the distribution of fund size for high-turnover funds (quintile 5) and low-turnover
funds (quintile 1) separately and for new and old managers separately. Panel A is for new managers
with tenure <= 7 years, and Panel B is for old managers with tenure > 7 years. We sort funds
into turnover quintiles every year based on their turnover ratios in CRSP mutual fund database.
The vertical axis is the number of fund-year observations for all the funds in our sample from 1961
to 2019, and the horizontal axis is the ln value of total net assets inflation adjusted to the dollar
amounts on 2020 January 1.
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Figure 11: Value Added, Value of The Real Growth Option, and Fraction of AUM in the Model
This figure plots the average value added of mutual funds, value from real growth option (green bar),
and the fraction of assets under management (AUM) in our parametric model, for funds investing
in short-term and long-term opportunities separately.
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Figure 12: Average Value Added by Turnover and Manager Tenure (in $million, CAPM)
This figure plots the average value added for each fund turnover quintiles by manager tenure. We
sort funds into turnover quintiles every year based on their turnover ratios in the CRSP mutual fund
database. This table reports the value added calculated based on the CAPM. Blue bars are for new
managers with tenure <= 7 years, and orange bars are for old managers with tenure > 7 years. All
dollar amounts are inflation adjusted to 2020 January 1 and in $million. All numbers are averaged
across months from 1961 January to 2019 December and annualized. The 90% confidence intervals
are calculated across months.
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Table 1: Summary Statistics

This table shows summary statistics for our sample of actively managed US equity mutual funds
from January 1961 to 2019 for the full sample, year 1961 to 1990, and 1991 to 2019 separately.
Panel A reports the mean and standard deviation of fund size, turnover from the CRSP mutual
fund database, fund age, and fund manager tenure from the MorningStar at the fund-year level.
Panel B reports the net fund returns, CAPM alphas, Vanguard alphas estimated using Vanguard
benchmark per month in percentage per month, expense ratios per year, and value added based
on CAPM and Vanguard benchmark. Fund size and value added are reported in million dollars
adjusted by inflation into January 1, 2020 dollars. All numbers are equally weighted.

Full sample 1961 - 1990 1991 - 2019

Num. of funds 3,390 714 3,356

Mean Std Mean Std Mean Std

Panel A: Fund characteristics (per fund-year)

Fund size (in mill $s) 1,374 5,874 222 962 1,567 6,313
Turnover 0.81 0.82 0.71 0.67 0.81 0.96
Manager tenure 5.7 5.1 5.9 6.7 5.7 5.0
Age 12.9 11.6 17.2 14.7 12.7 11.4

Panel B: Return, expenses, alphas, and value added (per fund-month)

Net return (in %) 0.78 15.31 0.57 6.56 0.79 15.61
Expense ratio (yearly, in %) 1.22 0.53 1.03 0.62 1.24 0.52
CAPM gross alpha (in %) 0.07 4.10 -0.09 2.92 0.08 4.15
Vanguard gross alpha (in %) 0.04 3.73 0.03 2.44 0.04 3.77
CAPM value added (in mill $s) 7.26 530.55 29.54 125.20 7.14 531.99
Vanguard value added (in mill $s) 0.54 126.18 -0.33 24.02 0.57 128.36
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Table 2: Flow-Performance Sensitivity by Fund Turnover and Manager Tenure (CAPM
Benchmark)

This table reports the regression results of quarterly fund flows on the interaction term of fund
turnover, manager tenure, and funds’ return ranks in the past quarter (1), year (2), and three
years (3), as described in Eq. (34). Ret Rank is the percentile of the fund’s benchmark-adjusted
return among all the funds, which is zero for the lowest and one for highest. We use CAPM as
the benchmark in this table and four Vanguard index funds in Appendix Table A3. Turnover is
the average turnover in the past quarter, year, and three years as reported in the CRSP database.
Manager Tenure is the (average) number of years the current manager(s) has been working in this
fund. ln(TNA) is the ln value of the fund’s total net asset at the end of last quarter. All independent
variables (except Ret Rank) are standardized to a mean of zero and a standard deviation of one.
Robust standard errors are clustered per quarter. Sig. lvl: *** 0.01, ** 0.05, and * 0.1

Dependent Variable: Fund Flow (a % of TNA)

(1) (2) (3)
Last-Quarter Ret Last-Year Ret Last-3-Year Ret

Ret Rank × Tenure × Turnover -0.0075*** -0.0048*** -0.0018*
(-6.01) (-4.61) (-1.90)

Ret Rank × Turnover 0.0072*** 0.0058*** 0.0080***
(3.10) (3.43) (4.21)

Turnover -0.0079*** -0.0042*** -0.0036***
(-7.53) (-5.68) (-4.44)

Ret Rank × Tenure -0.0109*** -0.0134*** -0.0032**
(-4.26) (-5.43) (-2.28)

Tenure -0.0053*** 0.0001 -0.0012*
(-4.44) (0.13) (-1.85)

Ret Rank × ln(TNA) -0.0112*** -0.0123*** -0.0047***
(-6.30) (-8.12) (-2.75)

ln(TNA) -0.0154*** -0.0084*** -0.0082***
(-9.77) (-8.28) (-9.81)

Ret Rank 0.0737*** 0.1125*** 0.1012***
(13.80) (19.60) (25.15)

Quarterly FE Yes Yes Yes

Observations 144,218 137,333 118,196
Adjusted R2 0.099 0.119 0.101
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Table 3: Fund Turnover and Manager Tenure

This table reports the regression results of annual fund turnover on manager tenure as in Eq. (35),
for all funds and funds in each size quintile separately. Panel A reports the benchmark regression
results. Panel B reports the robustness checks including (1) regressing return volatility (measured by
the standard deviation of fund monthly returns per year), instead of turnover, on manager tenure to
rule out the risk-taking story, (2) fund fixed effects, (3) controlling for fund age, and (4) controlling
for return volatility. Fund turnover is reported in the CRSP mutual fund database, and the manager
tenure is from the Morningstar. Robust standard errors are clustered at fund level. Sig. lvl: ***
0.01, ** 0.05, and * 0.1

Panel A: Regressions of fund turnover on manager tenure

Dependent Var. Turnover by Fund Size Quintiles
(all) 1 (small) 2 3 4 5 (large)

Tenure -0.019*** -0.005 -0.027*** -0.030*** -0.020*** -0.017***
(-8.09) (-0.80) (-5.82) (-10.99) (-4.08) (-4.94)

ln(TNA) -0.044*** -0.050** -0.072*** -0.050** -0.058** -0.082***
(-8.86) (-2.27) (-2.76) (-2.06) (-1.99) (-5.63)

Year FE Yes Yes Yes Yes Yes Yes

Observations 42,586 7,361 8,052 8,307 8,664 9,465
Adjusted 𝑅2 0.061 0.025 0.040 0.071 0.055 0.112

Panel B: Robustness Checks

Dependent Var. Volatility Turnover
(1) (2) (3) (4)

Tenure -0.000 -0.011*** -0.019*** -0.019***
(-0.20) (-5.86) (-8.02) (-8.24)

ln(TNA) -0.000*** -0.053*** -0.043*** -0.043***
(-3.26) (-9.12) (-8.25) (-8.84)

Turnover 0.003***
(8.66)

Age -0.001
(-0.72)

Volatility 9.096***
(10.88)

Year FE Yes No Yes Yes
Fund FE No Yes No No

Observations 42,209 42,586 42,583 42,209
Adjusted 𝑅2 0.623 0.539 0.061 0.089
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A Internet Appendix

A.1 Proofs

Proof of Lemma 2:

Let

𝜓(𝜑, 𝑞*
𝑖 ) ≡ 𝑑𝑖𝜑𝑔𝑖(𝜇𝑖) − 𝐶 ′

𝑖(𝑞*
𝑖 ).

Then, 𝜑 and 𝑞*
𝑖 satisfy 𝜓(𝜑, 𝑞*

𝑖 ) = 0 under the optimal choice. By the implicity function

theorem, we have
𝜕𝑞*

𝑖

𝜕𝜑
= −

𝜕𝜓

𝜕𝜑
𝜕𝜓
𝜕𝑞*

𝑖

= 𝑑𝑖𝑔𝑖(𝜇𝑖)
𝐶 ′′(𝑞𝑖)

> 0, (A.1)

because 𝐶 ′′ > 0.

Using the chain rule, we can now represent the fund flow sensitivity using the results

in Eqs. (4), (5), and (A.1) as follows:

𝜕𝑞*
𝑖

𝜕𝑟𝑖
= 𝜕𝑞*

𝑖

𝜕𝜑

𝜕𝜑

𝜕𝜉

𝜕𝜉

𝜕𝑟𝑖
=
(︃
𝑑𝑖𝑔𝑖(𝜇𝑖)
𝐶 ′′(𝑞*

𝑖 )

)︃(︂
𝜔

𝛾 + 𝜏𝜔

)︂(︂ 1
𝑔𝑖(𝜇𝑖)

)︂
=
(︃

𝑑𝑖
𝐶 ′′(𝑞*

𝑖 )

)︃(︂
𝜔

𝛾 + 𝜏𝜔

)︂
.

Proof of Theorem 3:

Let 𝑋 ≡ Φ × N where Φ is the set of perceived talents in R. Let C(𝑋) be the space of

functions that are bounded on 𝑋, and continuous on Φ. The space C(𝑋) is equipped with

the sup norm. We define an operator 𝑇 on C(𝑋) by

𝑇𝑉 (𝜑, 𝜏) ≡ max
{︁
𝑉𝑆(𝜑, 𝜏), 𝑉𝐿(𝜑, 𝜏)

}︁
, (A.2)

where 𝑉𝑖(𝜑, 𝜏) denotes the value of choosing opportunity 𝑖 ∈ {𝑆,𝐿}:

𝑉𝑖(𝜑, 𝜏) ≡ Π𝑖(𝜑) + 𝜅(1 − 𝑑𝑖)𝑉 (𝜑, 𝜏) + 𝜅𝑑𝑖 E
[︁
max

{︁
𝑉 (𝜑′, 𝜏 + 1), 0

}︁ ⃒⃒⃒
𝜑, 𝜏

]︁
, (A.3)

and 𝜑′ is the posterior of perceived talent in case of a successful belief update:

𝜑′ ≡ 𝜑+
(︂

𝜔

𝛾 + 𝜔

)︂
(𝜉 − 𝜑), and 𝛾′ ≡ 𝛾 + 𝜔.

We prove our first main result of the theorem.
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Theorem A.11. There exists a unique value function 𝑉 ∈ C(𝑋) which solves 𝑇𝑉 = 𝑉 .

Proof. Suppose that 𝑉 ∈ C(𝑋). Then, E
[︁
max

{︁
𝑉 (𝜑′, 𝜏 + 1), 0

}︁ ⃒⃒⃒
𝜑, 𝜏

]︁
is bounded. Because

𝑢(·) is bounded, Π𝑖 is bounded from Eq. (16). These findings together with Eq. (A.3) imply

that 𝑉𝑆 and 𝑉𝐿 are bounded. Then, Eq. (A.2) implies that 𝑇𝑉 is bounded because the

maximum of two bounded functions is bounded.

Likewise, because 𝑉 is continuous in 𝜑 at any given 𝜏 by the supposition that 𝑉 ∈ C(𝑋),

E
[︁
max

{︁
𝑉 (𝜑′, 𝜏 + 1), 0

}︁ ⃒⃒⃒
𝜑, 𝜏

]︁
is continuous in 𝜑. From Eq. (13), it is immediate that 𝑞*

is continuous in 𝜑 on [0,∞) because 𝐶 ′(·) > 0, 𝐶 ′′(·) > 0. Therefore, Eq. (16) implies that

Π𝑖 is continuous in 𝜑. These findings together with Eq. (A.3) imply that 𝑉𝑆 and 𝑉𝐿 are

continuous in 𝜑. Then, 𝑇𝑉 is continuous in 𝜑 because the maximum of two continuous

functions is continuous.

Therefore, 𝑇 maps C(𝑋) to C(𝑋). It is straight forward to show that the monotonicity

and the discounting conditions are satisfied for the Blackwell’s sufficient conditions. Because

C(𝑋) is a complete normed space, the contraction mapping theorem implies that 𝑇 has a

unique fixed point on C(𝑋), i.e., there exists a unique value function 𝑉 * in C(𝑋).

We now turn to our second main result that 𝑉 strictly increases in 𝜑. Given the result

of Theorem A.11, it is sufficient to show that the mapping 𝑇 defined in Eqs. (A.2)-(A.3)

maps the subset of C(𝑋) that increase in 𝜑 into the subset of C(𝑋) that strictly increases

in 𝜑 under the hypothesis (see Corollary 1 to Theorem 3.2 in Stokey and Lucas (1989).)

Lemma A.12. 𝑇𝑉 (𝜑, 𝜏) is strictly increasing in 𝜑 at any given level of 𝜏 .

Proof. The first term in Eq. (A.3) strictly increases in 𝜑 because applying the Envelope

theorem to Eq. (16) yields

𝑑Π𝑖(𝜑)
𝑑𝜑

= 𝑢′
(︁
𝑑𝑖𝜑𝑔𝑖(𝜇𝑖)𝑞*

𝑖 (𝜑) − 𝐶*(𝑞*
𝑖 ) − 𝐹

)︁
𝑑𝑖𝑔𝑖(𝜇𝑖)𝑞*

𝑖 (𝜑) > 0, (A.4)

which implies Π𝑖 is strictly increasing in 𝜑. The second term in Eq. (A.3) increases in 𝜑

because of the supposition that 𝑉 increases in 𝜑.

Because the sufficient statistic for the fund’s performance 𝜉 follows a conditional normal
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distribution with mean 𝜑 and variance 1/𝛾 + 1/𝜔 given 𝜑 and 𝜏 , we can represent

𝜑′
⃒⃒⃒
𝜑,𝜏

=
[︂
𝜑+

(︂
𝜔

𝛾 + 𝜔

)︂
(𝜉 − 𝜑)

]︂ ⃒⃒⃒⃒
𝜑,𝜏

= 𝜑+
(︂

𝜔

𝛾 + 𝜔

)︂(︂1
𝛾

+ 1
𝜔

)︂
𝜃 = 𝜑+ 1

𝛾
𝜃, (A.5)

where 𝜃 is a random variable follows the standard normal distribution. Then, we can obtain

the conditional expectation of continuation value of managing the fund as follows:

E
[︁
max

{︁
𝑉 (𝜑′, 𝜏 + 1), 0

}︁ ⃒⃒⃒
𝜑, 𝜏

]︁
=
∫︁ ∞

−∞
max

{︁
𝑉
(︁
𝜑′, 𝜏 + 1

)︁
, 0
}︁
𝑛(𝜃)𝑑𝜃

=
∫︁ ∞

−∞
max

{︂
𝑉

(︂
𝜑+ 1

𝛾
𝜃, 𝜏 + 1

)︂
, 0
}︂
𝑛(𝜃)𝑑𝜃,

(A.6)

where 𝑛(·) is the standard normal density function. Because 𝑉
(︁
𝜑+ (1/𝛾)𝜃, 𝜏 + 1

)︁
increases

in 𝜑 at any level of 𝜃 and 𝜏 under the supposition that 𝑉 increases in 𝜑, Eq. (A.6) implies

that the third term in Eq. (A.3) increases in 𝜑.

We prove that 𝑉 strictly decreases in 𝜏 . Again, it is sufficient to show that the mapping

𝑇 defined in Eqs. (A.2)-(A.3) maps the subset of C(𝑋) that decrease in 𝜏 into the subset

of C(𝑋) that strictly decreases in 𝜏 under the hypothesis.

Lemma A.13. 𝑇𝑉 (𝜑, 𝜏) is strictly decreasing in 𝜏 at any given level of 𝜑.

Proof. The first term in Eq. (A.3) is unaffected by 𝜏 . The second term in Eq. (A.3) de-

creases in 𝜏 because of the supposition that 𝑉 decreases in 𝜏 . Similarly as in the proof of

Lemma A.12, because 𝑉
(︁
𝜑+ (1/𝛾)𝜃, 𝜏 + 1

)︁
decreases in 𝜏 at any level of 𝜃 and 𝜑 under

the supposition that 𝑉 decreases in 𝜏 , Eq. (A.6) implies that the third term in Eq. (A.3)

decreases in 𝜏 .

This finishes the proof.

Proof of Theorem 5:

We first prove two useful lemmas under the condition that 𝑑𝐿 and 𝑔𝑆(𝜇𝑆) are sufficiently

small and 𝑑𝐿𝑔𝐿(𝜇𝐿) is fixed to be a positive constant.

Lemma A.14. 𝑉𝑆(𝜑𝐸(𝜏), 𝜏) > 𝑉𝐿(𝜑𝐸(𝜏), 𝜏).
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Proof. Suppose not (i.e., 𝑉𝑆(𝜑𝐸(𝜏), 𝜏) ≤ 𝑉𝐿(𝜑𝐸(𝜏), 𝜏)). Then, from Eq. (A.3), we have

0 = 𝑉𝐿(𝜑𝐸(𝜏), 𝜏) = Π𝐿(𝜑𝐸(𝜏)) + 𝜅𝑑𝐿 E
[︁
max

{︁
𝑉 (𝜑′, 𝜏 + 1), 0

}︁ ⃒⃒⃒
𝜑𝐸(𝜏), 𝜏

]︁
,

which implies Π𝐿(𝜑𝐸(𝜏)) < 0 and

𝜅E
[︁
max

{︁
𝑉 (𝜑′, 𝜏 + 1), 0

}︁ ⃒⃒⃒
𝜑𝐸(𝜏), 𝜏

]︁
= − 1

𝑑𝐿
Π𝐿(𝜑𝐸(𝜏)). (A.7)

Using 𝑉 (𝜑𝐸(𝜏), 𝜏) = 0 and Eq. (18), the supposition that 𝑉𝑆(𝜑𝐸(𝜏), 𝜏) ≤ 𝑉𝐿(𝜑𝐸(𝜏), 𝜏) also

implies that

(𝑑𝑆 − 𝑑𝐿)𝜅E
[︁
max

{︁
𝑉 (𝜑′, 𝜏 + 1), 0

}︁ ⃒⃒⃒
𝜑𝐸(𝜏), 𝜏

]︁
≤ Π𝐿(𝜑𝐸(𝜏)) − Π𝑆(𝜑𝐸(𝜏)). (A.8)

Substituting Eq. (A.7) into Eq. (A.8) yields

Π𝑆(𝜑𝐸(𝜏)) ≤ 𝑑𝑆
𝑑𝐿

Π𝐿(𝜑𝐸(𝜏)) < 0.

Then Π𝑆(𝜑𝐸(𝜏)) should be arbitrarily small as 𝑑𝐿 approaches zero. But this contradicts

because Π𝑆(·) is bounded below by 𝑢(−𝐹 ) due to Eq. (16).

Lemma A.15. 𝑉𝑆(𝜑, 𝜏) < 𝑉𝐿(𝜑, 𝜏) when 𝜑 is sufficiently large.

Proof. As 𝜑 goes to infinity, Π𝐿(𝜑) converges to �̄� where

�̄� ≡ sup
𝑤

𝑢(𝑤).

Then, Eq. (15) implies that 𝑉𝐿(𝜑, 𝜏) converges to �̄�/(1 − 𝜅). Likewise, Eqs. (10) and (15)

imply that

𝑉𝑆(𝜑, 𝜏) ≤ 𝑢(−𝐹 ) + 𝜅
�̄�

1 − 𝜅
<

�̄�

1 − 𝜅
.

Therefore, 𝑉𝑆(𝜑, 𝜏) < 𝑉𝐿(𝜑, 𝜏) when 𝜑 becomes sufficiently large.

By the result of Lemmas A.14-A.15, and the continuity of 𝑉 in 𝜑, the intermediate

value theorem implies that there exists a solution for Eq. (19) on the interval (𝜑𝐸(𝜏),∞)

to Eq. (19). Furthermore, because 𝑉𝑆(𝜑, 𝜏) crosses 𝑉𝐿(𝜑, 𝜏) from above at 𝜑 = 𝜑𝑆(𝜏) and
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𝑉𝐿(𝜑, 𝜏) is strictly increasing in 𝜑 (Theorem 3), we conclude that 𝜑𝑆(𝜏) strictly decreases

in 𝜏 .

Proof of Theorem 6:

Because the marginal return is infinity if no one invests in opportunity 𝑖 (i.e., 𝑔𝑖(0) = ∞), the

aggregate amount invested in each opportunity 𝑆 and 𝐿 should be positive in equilibrium,

i.e., 𝜇𝑆 > 0 and 𝜇𝐿 > 0, in which case there are some fund managers strictly prefer long-term

investment to short-term investment.

Therefore, Eq. (18), which is the condition for choosing short-term investment, implies

that, for those who prefer long-term investment, the following should be true:

(𝑑𝑆 − 𝑑𝐿)𝜅
{︁

E
[︁
max

{︁
𝑉 (𝜑′, 𝜏 + 1), 0

}︁ ⃒⃒⃒
𝜑, 𝜏

]︁
− 𝑉 (𝜑, 𝜏)

}︁
< Π𝐿(𝜑) − Π𝑆(𝜑). (A.9)

The L.H.S of Eq. (A.9) is the smallest and equal to zero when 𝜏 = ∞. Because there exists

at least some fund managers investing long-term in equilibrium, there should be some 𝜑

such that Eq. (A.9) is satisfied with 𝜏 = ∞ (otherwise it won’t be satisfied by 𝜏 less than

infinity.) This implies that Π𝐿(𝜑) > Π𝑆(𝜑) given that level of 𝜑.

By the definition of Π𝑖 in Eq. (16) and the monotonicity of 𝑢(·), Π𝐿(𝜑) > Π𝑆(𝜑) is true

if and only if

𝑑𝐿𝜑𝑔𝐿(𝜇𝐿)𝑞*
𝐿 − 𝐶(𝑞*

𝐿) > 𝑑𝑆𝜑𝑔𝑆(𝜇𝑆)𝑞*
𝑆 − 𝐶(𝑞*

𝑆), (A.10)

where 𝑞*
𝑖 solves 𝑑𝑖𝜑𝑔𝑖(𝜇𝑖) = 𝐶 ′(𝑞*

𝑖 ) for 𝑖 ∈ {𝑆,𝐿}, which is the first order condition in

Eq. (13). We define

Ψ(𝑦) ≡ 𝑦𝐶 ′−1(𝑦) − 𝐶
(︁
𝐶 ′−1(𝑦)

)︁
.

Then, Eq. (A.10) is equivalent to

Ψ(𝑑𝐿𝜑𝑔𝐿(𝜇𝐿)) > Ψ(𝑑𝑆𝜑𝑔𝑆(𝜇𝑆)). (A.11)
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But Ψ(·) is a strictly increasing function because 𝐶 ′ > 0:

Ψ′(𝑦) = 𝐶 ′−1(𝑦) + 𝑦
1

𝐶 ′′
(︁
𝐶 ′−1(𝑦)

)︁ − 𝐶 ′
(︁
𝐶 ′−1(𝑦)

)︁ 1
𝐶 ′′
(︁
𝐶 ′−1(𝑦)

)︁ = 𝐶 ′−1(𝑦) > 0,

which implies Eq. (A.11) is true if and only if 𝑑𝐿𝜑𝑔𝐿(𝜇𝐿) > 𝑑𝑆𝜑𝑔𝑆(𝜇𝑆), or equivalently

𝑑𝐿𝑔𝐿(𝜇𝐿) > 𝑑𝑆𝑔𝑆(𝜇𝑆).

Therefore, if Π𝐿(𝜑) > Π𝑆(𝜑) is true for some 𝜑, it is true for any value of 𝜑 ∈ (0,∞) where

the lower bound of 𝜑 is zero because it is the minimum value that ensures existence of a

non-negative solution for 𝑞*
𝑖 in Eq. (13).

Proof of Lemma 8:

We first calculate the transition function for the case of exit. From Theorem 4, the optimal

voluntary exit becomes a function of state variable 𝜑, 𝜏 , which is captured by 𝐼(𝜑, 𝜏). Then,

given state 𝜑, 𝜏 , the transition function for the case of exit is

𝑍(𝜑′ = 𝜑, 𝜏 + 1 = 𝑋|𝜑, 𝜏) = (1 − 𝜅) + 𝜅(1 − 𝐼(𝜑, 𝜏)) = 1 − 𝜅𝐼(𝜑, 𝜏).

Conditioning on no exit, the probability of payoff realization is determined by the

choice of investment opportunity. From Theorem 5, the choice of investment is a function

of state variable 𝜑, 𝜏 . Therefore, the probability of payoff realization can be represented as

a function of state variable 𝑑(𝜑, 𝜏). Then, given state 𝜑, 𝜏 , the transition function for the

case of no update is

𝑍(𝜑′ = 𝜑, 𝜏 + 1 = 𝜏 |𝜑, 𝜏) = 𝜅𝐼(𝜑, 𝜏)(1 − 𝑑(𝜑, 𝜏)).

Now, we work on the case for the belief update conditioning on no exit and payoff

realization. Similarly as in Eq. (A.5), we can represent the conditional distribution of 𝜑′

given 𝜑 and 𝜏 as

𝜑′
⃒⃒⃒
𝜑,𝜏

= 𝜑+ 1
𝛾 + (𝜏 + 1)𝜔𝜃.

where 𝜃 is a random variable follows the standard normal distribution. Then, 𝜑′ is obtained
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if

𝜃 = (𝛾 + (𝜏 + 1)𝜔)(𝜑′ − 𝜑).

Then, given state 𝜑, 𝜏 , the transition function for the case of update is

𝑍(𝜑′, 𝜏 + 1 = 𝜏 + 1|𝜑, 𝜏) = 𝜅𝐼(𝜑, 𝜏)(1 − 𝑑(𝜑, 𝜏))𝑛
(︁
(𝛾 + (𝜏 + 1)𝜔)(𝜑′ − 𝜑)

)︁
.

Finally, all other states than those states in the above can not be reached, which implies

the value of the transition function should be zero.

Proof of Theorem 9:

We first state a stronger condition (henceforth condition M) that implies Doeblin’s condition

(see, for example, Stokey and Lucas [1989] for further discussion on the condition). Let

𝑍𝑁 (𝐴|𝑠) ≡ 𝑍 be the probability of transition from state 𝑠 = (𝜑, 𝜏) to a set 𝐴 in 𝑁 steps.

Condition M. There exists 𝜖 > 0 and an integer 𝑁 > 1 such that for any 𝐴 ∈ R × 𝒯 ,

either 𝑍𝑁 (𝐴|𝑠) ≥ 𝜀, for all 𝑠 ∈ 𝑆, or 𝑍𝑁 (𝐴𝑐|𝑠) ≥ 𝜀, all 𝑠 ∈ R× 𝒯 .

Let 𝜀 ≡ 𝜅(1−𝑑𝑆) = 𝜅min(1−𝑑𝑆 , 1−𝑑𝐿). From Lemma 8 and Eq. (24), it is immediate

that 𝑍𝑁 (𝜑,𝑋|𝜑, 𝜏) ≥ 𝜀 for all 𝜑, 𝜏 . Because, for any 𝐴 ⊂ 𝑆, it is either 𝜑,𝑋 ∈ 𝐴 or 𝜑,𝑋 ∈

𝐴𝑐, we have either 𝑍𝑁 (𝐴|𝜑, 𝜏) ≥ 𝑍𝑁 (𝜑,𝑋|𝜑, 𝜏) ≥ 𝜀 or 𝑍𝑁 (𝐴𝑐|𝜑, 𝜏) ≥ 𝑍𝑁 (𝜑,𝑋|𝜑, 𝜏) ≥ 𝜀.

Then, due to Theorem 11.12 in Stokey and Lucas (1989), there exists a unique stationary

distribution 𝜈 that solves the functional equation in Eq. (25).

A.2 Estimation of Decreasing Returns to Scale Parameters

In this section, we provide a detailed description of our estimation procedure of decreasing

returns to scale (DRS) parameters at fund level and at investment opportunity level.

We estimate parameters 𝑏1,𝑆 and 𝑏1,𝐿 in the decreasing returns to scale functions of

different types of investment opportunities, 𝑔𝑖 (𝜇𝑡,𝑖), as follows. We construct a proxy for

𝜇𝑡,𝑖 in the following way. Using data from 1999 to 2018, we generate the quintile break

points based on fund-level turnover ratios in this sample period. We label a fund in a given
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quarter as high turnover if its turnover ratio is higher than the 80th percentile in this sample

period and as low turnover if it is lower than the 20th percentile. Then, for each quarter, we

compute the ratio between the sum of AUM across all funds labeled either as high or low

turnover in our sample, and the aggregate capitalization of all the CRSP stocks. We denote

this ratio for high turnover funds as 𝜇𝑡,𝑆 , and for the low turnover funds as 𝜇𝑡,𝐿. In addition,

to capture the industry level decreasing returns to scale, following Pastor, Stambaugh and

Taylor (2015), we also construct the 𝜇𝑡,𝑡𝑜𝑡 which is the sum of AUM across all funds in our

sample, divided by the aggregate capitalization of all the CRSP stocks. We find that, over

the time series, there exist trends in these ratios (𝜇). Hence, we de-trend 𝜇𝑡,𝑆 , 𝜇𝑡,𝐿, and

𝜇𝑡,𝑡𝑜𝑡 using a Hodrick-Prescott (HP) Filter with the smoothing parameter set at 1600 (given

our data is at the quarterly frequency).

We follow Zhu (2018) in estimating the decreasing returns to scale parameters at the

fund level 𝑎, the investment opportunities level, and the industry level. More specifically,

we first recursively forward-demean the following variables: the lagged 𝜇𝑡,𝑆 , 𝜇𝑡,𝐿, and 𝜇𝑡,𝑡𝑜𝑡,

the dependent variable (fund alphas), and the fund size. We define the recursively forward-

demeaned variables for a given fund as

𝑥𝑡−1 = 𝑥𝑡−1 − 1
𝑇 − 𝑡+ 1

𝑇∑︁
𝑠=𝑡

𝑥𝑠−1, (A.12)

where 𝑥 represents one of the aforementioned five variables and 𝑇 denotes the total length

of the fund. To address the endogeneity issue of the fund size, following Zhu (2018), we

regress forward-demeaned fund size (𝑞𝑡−1) onto actual fund size (𝑞𝑡−1) and use its predicted

value (𝑞*
𝑡−1) in the later estimation.34 The regression equation is as follows:

𝑞𝑡−1 = 𝜓 + 𝜌𝑞𝑡−1 + 𝜈𝑡−1. (A.13)

34Please refer to Pastor, Stambaugh and Taylor (2015) for more details of the finite-sample bias introduced
by the correlation between fund size and benchmark-adjusted fund returns. As documented in Pastor,
Stambaugh and Taylor (2015), industry size can instrument for itself in the estimation of decreasing returns
to scale at the industry level, since the correlation between industry size and benchmark-adjusted fund
returns is sufficiently small (with a R-squared about 0.006 in their panel regression). The same argument
holds at the investment opportunities level as well.
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Our estimation equation for decreasing returns to scale at various levels is then given by:

𝑟𝑡 = 𝑏𝑆𝜇𝑡−1,𝑆 + 𝑏𝐿𝜇𝑡−1,𝐿 + 𝑏𝑡𝑜𝑡𝜇𝑡−1,𝑡𝑜𝑡 + 𝑎𝑞*
𝑡−1 + 𝜖𝑡. (A.14)

In estimating the above equation, we only keep the subsample of fund’s observations that

belong to either high or low turnover quintiles (i.e., its turnover ratio is either higher than

the 80th percentile or lower than the 20th percentile in the sample period).

For high turnover funds, the left hide side variable of the regression 𝑟𝑡 is the forward-

demeaned quarterly CAPM alpha. For the low turnover funds, 𝑟𝑡 is the forward-demeaned

average CAPM alpha over the next 12 quarters. Consistent with the fact that a fund is

competing with other funds within the same type of investment strategy, we set 𝜇𝑆,𝑡−1

(𝜇𝐿,𝑡−1) to zero for low (high) turnover funds.

Estimation results are provided in Appendix Table A2. Firstly, consistent with Zhu

(2018), we find a significantly negative coefficient in front of 𝑞*
𝑡−1 which indicates that there

exists fund-level DRS. Our estimate of this fund-level DRS is 𝑎 = .00503 when fund size is

in billion dollars. Secondly, the coefficients in front of both 𝜇𝑡−1,𝑆 and 𝜇𝑡−1,𝐿 are negative

and statistically significant. This result suggests that the intensity of competition for a

given type of investment opportunity significantly affects the equilibrium abnormal return

of investing in that opportunity. Lastly, we find that the coefficient in front of 𝜇𝑡−1,𝑡𝑜𝑡 is

negative but insignificant. It indicates that the intensity of the two types of investment

opportunities captures the majority of the impacts of the mutual fund industry size on the

individual fund’s returns.

Notice that, when we construct the empirical proxy for 𝜇𝑡,𝑖, we scale the total fund AUM

of high- and low- turnover funds by the aggregate capitalization of all the CRSP stocks,

instead of the total fund AUM of the mutual fund industry as in our model. Therefore, we

multiply 𝑏𝑆 and 𝑏𝐿 by 16.2%, the average ratio between mutual funds total AUM and the

total stock market, to adjust for this difference and get 𝑏𝑆 = −0.294 and 𝑏𝐿 = −0.016. Then,

we search for the 𝑏1,𝑆 and 𝑏1,𝐿 that give 𝑑𝑆𝐸 (𝜑𝑆) 𝑏1,𝑆 = −0.294 and 𝑑𝐿𝐸 (𝜑𝐿) 𝑏1,𝐿 = −0.016

iteratively under the current set of parameters and get 𝑏1,𝑆 = −61.92 and 𝑏1,𝐿 = −14.80.

Under these two values, we have the average skill of short-term funds at the steady state
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as 𝐸 (𝜑𝑆) = 0.0095, and that of long-term funds as 𝐸 (𝜑𝐿) = 0.0272.

A.3 Sensitivity Tests for The Value of Real Growth Option

Next, we perform sensitivity analyses for the value of the real growth option with respect to

the probability 𝑑𝑆 , the precision of the prior 𝛾, and the precision of the signal 𝜔. Since we

are more interested in this option value for new managers with an initial level of perceived

skill, we do this sensitivity test for new managers that have no payoff realization yet (𝜏 = 0)

as a function of perceived skill 𝜑 in the left panels (Panel A1, B1, and C1) of Figure A1,

and managers with initial level of perceived skill (𝜑 = 𝜑0 = 0.005) as a function of 𝑑𝑆 , 𝛾,

and 𝜔 correspondingly in the right panels (Panel A2, B2, and C2) of that figure.

As reported in Figure A1, this option value remains substantial for new fund managers

(with 𝜏 = 0 and 𝜑 = 0.005) under a large range of parameter values of 𝑑𝑆 , 𝛾, and 𝜔.

This option value from short-term investing stays larger than the higher payoff given by

long-term investing (dashed gray lines) for new managers. For example, in Panel A1, the

intersection of the dotted blue vertical line and the orange curve (𝑑𝑆 = 0.1) stays above

the dashed gray curve even if the probability 𝑑𝑆 is set to a value of 0.1, close to that of

the long-term opportunity (𝑑𝐿 = 0.04). As Eq. (18) predicts, this option value increases

monotonically with the probability 𝑑𝑆 (as shown in Panel A2 of Figure A1), and it mostly

stays above the dashed gray line when 𝑑𝑆 ≥ 0.1. Consistent with Lemma 1, the value of

the real growth option decreases with an increase in the precision of the prior 𝛾 (Panel B2)

or the precision of the signal 𝜔 (Panel C2). Since an increase in either the precision of the

prior or the precision of the signal decreases the uncertainty in a manager’s skill, it decreases

the value of the real growth option. Because in the belief-updating equation (Eq.(12)) the

loading on return outperformance is given by 𝜔
𝛾+(𝜏+1)𝜔 , the option value decreases with 𝛾

more for new managers (𝜏 = 0) than for older managers, whereas it decreases with 𝜔 more

for older managers than for new managers.

In Appendix Figure A2, we also perform sensitivity analyses with respect to discount

rate 𝛽, survival rate 𝜅, reservation utility 𝑢0, fund-level DRS parameter 𝑎, and investment-

opportunity-level DRS parameters 𝑏1,𝑆 and 𝑏1,𝐿. The results show that, for new fund
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managers with a perceived skill of 𝜑0 = 0.005 (dotted vertical blue line), this option value

from short-term strategies remains substantially larger than the higher payoff given by

long-term strategies under most parameter values.

In Panel A1, we perform a sensitivity analysis regarding the discount rate 𝛽. Up until

now, we have assumed it to be one since a discount rate below one is mathematically

isomorphic to a lower survival rate 𝜅 in the manager’s optimization. As reported in Panel

A1, we find that the value of the real growth option of new managers stays large for a

discount rate 𝛽 between 0.91 and 0.99 per quarter. For example, the value of the real

growth option for a new manager (with 𝜑=0.005 and 𝜏 = 0) only decreases modestly from

$4.9 million to $4.0 million as we decrease the discount rate 𝛽 from 1 to 0.95 per quarter

(0.81 per year), which is substantially smaller than the usual discount rates used in the

literature. It remains larger than the dashed gray line (i.e., the higher payoff given by long-

term strategies) of $0.5 million for new mangers. Similarly, this option value stays large for

new managers with a survival rate 𝜅 between 0.91 and 0.99 (as reported in Panel A2).

In Panel B1, we perform a sensitivity analysis regarding the utility value of the outside

option 𝑢0. We find that the value of the real growth option for new manages stays roughly

the same when there is zero utility from the outside option (line 𝑢0 = 0 in Panel B1),

suggesting that the large option value is not caused by a high utility from the outside

option. The option value does increase with 𝑢0 if we increase 𝑢0 from 0.02 to as large as

0.18, especially for new managers with a relatively low perceived skill, since they have a

higher chance of exiting.

As reported in Panel B2 & C2, the value of the real growth option increases substantially

if either the fund-level DRS parameter 𝑎 or the DRS parameter for long-term opportunities

𝑏1,𝐿 becomes smaller. The reason is that this option value depends largely on the value added

of investing in long-term strategies once a manager has proved herself to be skilled, and a

decrease in either of these two DRS parameters increases the value added of investing in

long-term strategies substantially. Therefore, compared with the literature which generally

uses relatively larger DRS parameters, our estimate of the option value is conservative. For

example, if we use the fund-level DRS parameter 𝑎 = .001455 from Zhu (2018), instead
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of 𝑎 = .00503, this option value would be close to $20 million per quarter.35 Meanwhile,

since new fund managers have a low perceived skill of 𝜑0 = 0.005, their additional payoff

from investing in long-term strategies (dashed gray curve) does not depend much on these

DRS parameters and is close to zero in all scenarios. As a result, this option value stays

above the dashed gray curve for new managers under different DRS parameter values. In

contrast, the value of the real growth option does not change much with the DRS parameter

for short-term opportunities 𝑏1,𝑆 (as shown in Panel C1), since, in equilibrium, the direct

payoff of investing in short-term strategies is always pushed down to a low level by the large

option value embedded.

A.4 Choice of Exiting

To test Theorem 4, we run a probit regression to investigate the relation between managers’

exit decisions and fund size, as well as manager tenure. In particular, we regress an exit

dummy on fund size and manager tenure at the annual frequency:

𝐸𝑥𝑖𝑡 𝐷𝑢𝑚𝑚𝑦𝑗,𝑦 =𝛽1 * 𝑇𝑒𝑛𝑢𝑟𝑒𝑗,𝑦−1 × 𝑙𝑛(𝑇𝑁𝐴)𝑗,𝑦−1 + 𝛽2 * 𝑇𝑒𝑛𝑢𝑟𝑒𝑗,𝑦−1 (A.15)

+ 𝛽3 * 𝑙𝑛(𝑇𝑁𝐴)𝑗,𝑦−1 + 𝛽4 * 𝑙𝑛(𝑇𝑁𝐴𝑓𝑎𝑚𝑖𝑙𝑦)𝑗,𝑦−1 + 𝜐𝑦 + 𝜀𝑗,𝑦.

The dependent variable 𝐸𝑥𝑖𝑡 𝐷𝑢𝑚𝑚𝑦𝑗,𝑦 equals one when there is a change in the manager

(management team) of a fund in a year, and zero otherwise. 𝑙𝑛(𝑇𝑁𝐴𝑓𝑎𝑚𝑖𝑙𝑦)𝑗,𝑦−1 is the

natural logarithm of the total AUM of fund 𝑗’s managing firm at the end of the previous

year. All independent variables are standardized to a mean of zero and a standard deviation

of one.

As predicted in Theorem 4, we find in Appendix Table A5 that the chance of a manager

exiting decreases significantly with an increase in fund size, especially for older managers

with longer tenure. The point estimate of 𝑙𝑛(𝑇𝑁𝐴) 𝑠𝑡𝑑 suggests that a manager in the

sample who has a fund size one standard deviation lower increases the probability that

she will exit next year by about 4.4% on average, and the point estimate of 𝑇𝑒𝑛𝑢𝑟𝑒 𝑠𝑡𝑑 ×
35The regression coefficient in column 4 of Table 3 of Zhu (2018) is 0.485 using monthly returns. This

value means that for every one hundred million dollars increase in the fund size, the expected monthly alpha
will be decreased by 0.485 bps, corresponding to 0.485 × 3 = 1.455 bps per quarter. Thus, a one billion
dollar increase in the fund size leads to a decrease in quarterly alpha of 0.001455 (i.e., 14.55bps).
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𝑙𝑛(𝑇𝑁𝐴) 𝑠𝑡𝑑 suggests that this number increases by 1.5% for a manager with a tenure one

standard deviation longer (5.1 years as reported in Table 1). That is, older managers with

a smaller fund size are more likely to exit.

In principle, our exit dummy captures all changes in the management team of a fund

including promotions, firings, demotions, or lateral moves. As documented in Chevalier and

Ellison (1999), the majority of these changes reflect demotions instead of promotions because

the management of an equity fund is among the pinnacle positions for portfolio managers

within a fund company. As robustness checks, we use two alternative definitions of manager

exit. In setting (2) of Appendix Table A5, the exit dummy equals one when a manager in a

fund stops being a fund manager in our database. In setting (3) of Appendix Table A5, it

equals one when a fund stops operating. Results based on these two alternative measures

are consistent with our model prediction as reported in Appendix Table A5.

Since our model predicts that managers of small funds are more likely to choose high-

turnover strategies and, at the same time, more likely to exit (as in Figure 3), we expect that

managers of high-turnover funds are more likely to exit than those of low-turnover funds.

Figure 6 plots the probability that a fund-manager combination survives more than 𝑛 (1-10)

years conditional on this fund-manager pair staying in turnover quintiles 1 or 5. Cumulative

survival rates are calculated based on the survival rates for each manager tenure in each

turnover quintile reported in Appendix Table A4.36 Consistent with our model prediction,

the survival rates of low turnover fund managers are substantially higher than those of

high turnover fund managers. For example, the chance that a low turnover fund manager

survives more than a year (ten years) is 82% (9%), which is substantially higher than the

70% (1%) chance for high turnover fund managers correspondingly. Moreover, Figure 6

shows that, on average, the chance of managers exiting is high. Only 1% - 9% of fund

managers keep managing the same funds more than ten years.
36Appendix Table A4 reports the survival rates of fund-manager combinations by manager tenure and

fund turnover quintiles in detail. We calculate the survival rate as the fraction of managers (management
team) with (average) manager tenure 𝑛 at the end of each year that continue to manage the same fund in the
entire following year. A manager stops managing a fund either because he quits or the fund stops operating.
In Appendix Table A4 and Figure 6, we sort all funds into quintiles with thresholds of annual turnover below
27%, between 27% and 48%, between 48% and 74%, between 74% and 117%, and above 117%. We use the
same thresholds for all the years, so the results are not affected by the variation of turnover thresholds over
time.
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Panel A1 & A2: Sensitivity Test of 𝑑𝑆

Panel B1 & B2: Sensitivity Test of 𝛾

Panel C1 & C2: Sensitivity Test of 𝜔

Figure A1: Sensitivity Tests
These figures plot the value of the real growth option for different values of 𝑑𝑆 (Panel A), 𝛾 (Panel
B), and 𝜔 (Panel C). The left panels (Panel A1, B1, and C1) are as a function of perceived skill
𝜑, given 𝜏 = 0. Dotted vertical blue lines are initial level of perceived skill 𝜑0 = 0.005. The right
panels (Panel A2, B2, and C2) are as a function of variable 𝑑𝑆 , 𝛾, and 𝜔 under investigation for
different values of 𝜏 , given 𝜑 = 0.005.



Panel A1: Sensitivity test of 𝛽 Panel A2: Sensitivity test of 𝜅

Panel B1: Sensitivity test of 𝑢0 Panel B2: Sensitivity test of 𝑎

Panel C1: Sensitivity test of 𝑏1,𝑆 Panel C2: Sensitivity test of 𝑏1,𝐿

Figure A2: Sensitivity Tests
These figures plot the value of the real growth option for discount rate 𝛽, survival rate 𝜅, reservation
utility 𝑢0, fund-level DRS parameter 𝑎, and investment-opportunity-level DRS parameters 𝑏1,𝑆 and
𝑏1,𝐿, as a function of perceived skill 𝜑, given 𝜏 = 0. Dotted vertical blue lines are initial level of
perceived skill 𝜑0 = 0.005.
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Panel A: Average Number of Funds per Year
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Panel B: Total Net Assets (in billion $s)
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Figure A3: Number of Funds and Total Net Assets by Manager Tenure and Fund Turnover
Quintiles

This figure plots the number of funds and the total net assets for each fund turnover quintile and
by manager tenure. Panel A is for the average number of fund per year in each category, and Panel
B is for the total net assets of all the funds in each category. We sort funds into turnover quintiles
every year based on their turnover ratios in CRSP mutual fund database. Blue bars are for new
managers with tenure <= 7 years, and orange bars are for old managers with tenure > 7 years. All
dollar amounts are inflation adjusted to 2020 January 1, and all numbers are averaged across years
from 1961 to 2019.
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Figure A4: Average Value Added by Fund Turnover Quintiles and Manager Tenure (in
$million, Vanguard Benchmarks)

This figure plots the average value added for each fund turnover quintiles by manager tenure. We
sort funds into turnover quintiles every year based on their turnover ratios in the CRSP mutual fund
database. This table reports the value added calculated based on four US Vanguard Index funds
as benchmarks (including S&P 500 Index (VFINX), Extended Market Index (VEXMX), Small-Cap
Index (NAESX), and Mid-Cap Index (VIMSX)). Blue bars are for new managers with tenure <= 7
years, and orange bars are for old managers with tenure > 7 years. All dollar amounts are inflation
adjusted to 2020 January 1 and in $million. All numbers are averaged across months from 1961
January to 2019 December and annualized. The 90% confidence intervals are calculated across
months.
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Table A1: Parameter Values used in Numerical Analysis

Variable Value Interpretation
𝑑𝑆 .5 payoff rate (turnover) of short-term opportunity
𝑑𝐿 .04 payoff rate (turnover) of long-term opportunity
𝑎 .00503 fund-level decreasing returns to scale (DRS)
𝑏0,𝑆 4/.5 constant scale parameter for short-term opportunity
𝑏0,𝐿 1/.04 constant scale parameter for for long-term opportunity
𝑏1,𝑆 -61.92 DRS parameter for short-term opportunity
𝑏1,𝐿 -14.80 DRS parameter for long-term opportunity
𝜑0 .02/4 prior mean of talent 𝜑
𝛾 400×42 prior precision of talent 𝜑
𝜔 300×42 precision of idiosyncratic noise 𝜖
𝜅 .95 probability of fund survival
𝑢0 .02 reservation utility for the outside option
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Table A2: Estimation of decreasing returns to scale at various levels

This table reports the estimates of decreasing returns to scale at fund level, investment opportunities
level, and industry level using Eq. (A.14):

𝑟𝑡 = 𝑏𝑆𝜇𝑡−1,𝑆 + 𝑏𝐿𝜇𝑡−1,𝐿 + 𝑏𝑡𝑜𝑡𝜇𝑡−1,𝑡𝑜𝑡 + 𝑎𝑞*
𝑡−1 + 𝜖𝑡,

where 𝜇𝑡−1,𝑆 , 𝜇𝑡−1,𝐿, and 𝜇𝑡−1,𝑡𝑜𝑡 are de-trended lagged total assets under management (AUM) of
short-term funds (in top fund turnover quintile), long-term funds (in bottom fund turnover quin-
tile), and all funds correspondingly divided by the aggregate capitalization of all the CRSP stocks.
Variable 𝑞𝑡−1 is lagged fund size in million dollars. Dependent variable 𝑟𝑡 is quarterly CAPM alpha
for high-turnover funds and average CAPM alpha over the next 12 quarters for low turnover funds.
Following Zhu (2018), all variables are forward-demeaned as described in Eq. (A.12), and we use
the estimate (𝑞*

𝑡−1) of regressing forward-demeaned fund size (𝑞𝑡−1) onto actual fund size (𝑞𝑡−1) as
described in Eq. (A.13) to address the endogeneity issue. Consistent with the fact that a fund is
competing with other funds within the same type of investment strategy, we set 𝜇𝑆,𝑡−1 (𝜇𝐿,𝑡−1) to
zero for low (high) turnover funds. Standard errors are clustered at the fund level.

Value 𝑡-statistics
𝑏𝑆 -1.809 -9.87
𝑏𝐿 -0.099 -1.73
𝑏𝑡𝑜𝑡 -0.083 -1.28
𝑎 -5.03e-6 -5.23
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Table A3: Flow-Performance Sensitivity by Fund Turnover and Manager Tenure (Vanguard
Benchmark)

This table reports the regression results of quarterly fund flows on the interaction term of fund
turnover, manager tenure, and funds’ return ranks in the past quarter (1), year (2), and three years
(3), as described in Eq. (34). Ret Rank is the percentile of the fund’s benchmark-adjusted return
among all the funds, which is zero for the lowest and one for highest. We use four Vanguard index
funds as the benchmark in this table. Turnover is the average turnover in the past quarter, year, and
three years as reported in the CRSP database. Manager Tenure is the (average) number of years the
current manager(s) has been working in this fund. ln(TNA) is the ln value of the fund’s total net
asset at the end of last quarter. All independent variables (except Ret Rank) are standardized to
a mean of zero and a standard deviation of one. Robust standard errors are clustered per quarter.
Sig. lvl: *** 0.01, ** 0.05, and * 0.1

Dependent Variable: Fund Flow (a % of TNA)

(1) (2) (3)
Last-Quarter Ret Last-Year Ret Last-3-Year Ret

Ret Rank × Tenure × Turnover -0.0071*** -0.0046*** -0.0020**
(-6.07) (-4.61) (-2.02)

Ret Rank × Turnover 0.0068*** 0.0041** 0.0062***
(3.39) (2.61) (3.25)

Turnover -0.0075*** -0.0035*** -0.0029***
(-7.87) (-4.03) (-4.05)

Ret Rank × Tenure -0.0116*** -0.0142*** -0.0035**
(-4.91) (-5.90) (-2.24)

Tenure -0.0045*** 0.0006 -0.0014**
(-4.34) (0.67) (-2.17)

Ret Rank × ln(TNA) -0.0117*** -0.0099*** -0.0017
(-6.96) (-6.33) (-0.92)

ln(TNA) -0.0132*** -0.0080*** -0.0086***
(-9.10) (-7.14) (-10.14)

Ret Rank 0.0725*** 0.1118*** 0.1052***
(15.67) (21.21) (26.26)

Quarterly FE Yes Yes Yes

Observations 140,216 132,986 113,097
Adjusted R2 0.093 0.117 0.108
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Table A4: Survival Rates by Manager Tenure and Fund Turnover

This table reports the survival rates of fund-manager combinations by manager tenure and fund
turnover. We calculate the survival rate as the fraction of managers with manager tenure 𝑛 at the
end of each year that continue to manage the same fund in the following entire year. A manager stops
managing a fund either because he quits or the fund stops operating. First column is the manager
tenure (1-15), which is the number of years a manager has worked in the current fund. Second
column reports the survival rates for all the fund-manager combinations in our sample. Column
three to seven report the survival rates for each turnover quintile separately, and colume eight (5-1)
reports the difference between quintile five and one. In this analysis, we define turnover quintiles as
funds with an annual turnover below 27%, between 27% and 48%, between 48% and 74%, between
74% and 117%, and above 117%. We use the same thresholds for all the years, so the results are
not affected by the variation of turnover thresholds over time.

Turnover Quintiles
Tenure All 1 (low) 2 3 4 5 (high) 5-1

1 0.76 0.82 0.79 0.79 0.76 0.70 -0.12
2 0.71 0.79 0.73 0.71 0.68 0.66 -0.13
3 0.71 0.77 0.76 0.71 0.67 0.65 -0.12
4 0.70 0.77 0.71 0.70 0.67 0.66 -0.10
5 0.69 0.77 0.74 0.72 0.63 0.60 -0.17
6 0.70 0.77 0.70 0.67 0.67 0.68 -0.09
7 0.72 0.78 0.75 0.76 0.65 0.64 -0.13
8 0.73 0.80 0.77 0.73 0.68 0.62 -0.18
9 0.74 0.80 0.78 0.70 0.71 0.67 -0.13

10 0.74 0.81 0.73 0.72 0.71 0.68 -0.13
11 0.74 0.78 0.79 0.73 0.72 0.63 -0.14
12 0.78 0.80 0.78 0.80 0.74 0.75 -0.05
13 0.78 0.83 0.79 0.80 0.76 0.66 -0.17
14 0.77 0.80 0.74 0.74 0.79 0.78 -0.01
15 0.84 0.87 0.81 0.86 0.84 0.74 -0.14
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Table A5: Manager Exit and Fund Turnover

This table reports the probit regression results of exit dummy on fund size and manager tenure at
year frequency, as described in Eq. (A.15). In setting (1), exit dummy equals one when there is any
change in the manager (management team) of a fund in a year, and zero otherwise. In setting (2),
it equals one when any manager in a fund stops being a fund manager in our database. In setting
(3), it equals one when a fund stops operating. Turnover is the average turnover reported in the
CRSP database. Manager Tenure is the (average) number of years the current manager(s) has been
working in this fund. ln(TNA) is the ln value of the fund’s total net asset at the end of last year,
and ln(TNA family) is the ln value of the fund managing firm’s total net asset at the end of last
year. All independent variables are standardized to a mean of zero and a standard deviation of one.
Robust standard errors are clustered per year. Sig. lvl: *** 0.01, ** 0.05, and * 0.1

(1) (2) (3)
Fund-Manager Exit Manager Termination Fund Termination

Tenure × ln(TNA) -0.044*** -0.034** -0.135***
(-2.65) (-2.10) (-4.58)

ln(TNA) -0.127*** -0.038** -0.556***
(-5.68) (-2.56) (-22.06)

Tenure -0.021 -0.090*** -0.089***
(-1.36) (-4.96) (-4.60)

ln(TNA_family) 0.166*** 0.061*** 0.179***
(11.99) (3.84) (9.16)

Year FE Yes Yes Yes
Observations 38,587 39,192 37,147

Pseudo R2 0.019 0.012 0.14
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