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1 Introduction

One of the most enduring puzzles of the asset pricing literature is that out-of-the-money (OTM)

index put options are associated with large negative average returns (e.g., Jackwerth, 2000; Santa-

Clara and Saretto, 2009; Bondarenko, 2014). While an index put option is a negative beta asset

and thus is expected to have a negative rate of return, the magnitudes in the data seem too large to

be consistent with standard models (Chambers, Foy, Liebner, and Lu, 2014). On the other hand,

Bakshi, Madan, and Panayotov (2010) document that the average returns of OTM index call options

are also negative and declining with the strike price. This stylized fact is somewhat less known,

but is perhaps even more puzzling because it contradicts the prediction from standard theories

that expected call option returns should be positive and increase with the strike price (Coval and

Shumway, 2001).1

Previous research relates these large negative OTM call and put option returns to models fea-

turing non-standard preferences. For instance, Polkovnichenko and Zhao (2013) consider a rank-

dependent utility model with a particular probability weighting function to explain the data. Baele,

Driessen, Ebert, Londono, and Spalt (2018) show that a model with cumulative prospect theory

preferences is able to generate the otherwise puzzling index option return patterns. The low returns

on OTM call and put options can also be explained with theories of skewness/lottery preferences and

leverage constraints (Barberis and Huang, 2008; Brunnermeier, Gollier, and Parker, 2007; Mitton

and Vorkink, 2007; Frazzini and Pedersen, 2012). OTM options are often associated with substan-

tial skewness and embedded leverage, which make them particularly attractive for investors who

have skewness preferences or face leverage constraints. Demand pressure will drive up prices and

consequently lead to low returns in equilibrium (Gârleanu, Pedersen, and Poteshman, 2009).

This paper investigates whether the low returns on OTM index options can be consistent with

the pricing of market volatility and jump risks. Options are sensitive to changes in volatility

1Related, Constantinides and Jackwerth (2009) and Constantinides et al. (2011) document widespread violations
of stochastic dominance in OTM index and index futures options.
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and price jumps, therefore their expected returns should critically depend on investor’s attitudes

towards volatility and jump risks. To study how the pricing of volatility and jump risks affects

the cross-section of index option returns, we follow Broadie, Chernov, and Johannes (2009) and

compare historical realized option returns with the expected returns implied from option pricing

models. We first show that the low returns on OTM call and put options would appear puzzling

to standard option pricing models in which volatility and jump risks are not priced, as models

with only an equity risk premium are inconsistent with the empirical index option return patterns.

However, when market volatility risk is priced, the implied expected option returns match the

average returns of call and put options across all strikes as well as the average returns of different

option portfolios. Consistent with the data, the pricing of volatility risk implies a steep relationship

between expected put option returns and the strike price, with OTM put options earning a large

negative rate of return. It also implies an overall decreasing relation between expected call option

returns and the strike price, with OTM call options earning negative expected returns. Finally,

we find that the pricing of jump risk implies that OTM put options have large negative expected

returns with magnitudes very close to the data. But the jump risk premium would also imply the

expected call option return is an increasing function of the strike price and OTM calls should earn

large positive expected returns, which is contrary to the data. Our results are robust to different

parameterizations of stochastic volatility and jumps.

Option pricing theory not only predicts that the pricing of volatility risk results in lower expected

option returns, but also predicts that the effect of the volatility risk premium is stronger for OTM

options and at-the-money (ATM) straddles. Confirming these predictions, we find that the volatility

risk premium is positively related to future index option returns: A more negative volatility risk

premium in a given month is associated with low option returns in the subsequent month. Moreover,

this relationship is indeed stronger for OTM options and ATM straddles. Our findings cannot

be explained by the underlying return predictability by the volatility risk premium (Bollerslev,

Tauchen, and Zhou, 2009), and are robust to different empirical implementations and controlling for
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other variables. Lastly we find that the jump risk premium is significantly related to future returns

on OTM put options, but its relationship with call option and straddle returns is insignificant.

Taken together, our results suggest that the low returns on OTM index options are primarily

due to the pricing of market volatility risk, although the jump risk premium also accounts for

some portion of OTM put option returns.2 Broadie, Chernov, and Johannes (2009) and Chambers

et al. (2014) compare historical returns of put options and a number of option portfolios with those

implied from option pricing models, finding that index option returns can be explained by a jump

risk premium.3 The key difference between these papers and the current study is that their focus is

on OTM index put options, while our paper aims to understand not only OTM index put options

but also OTM index call options. Studying index call options is important because any theory put

forward to explain the low returns on OTM put options should also fit call option returns. Studying

call options is also important because call options, which are claims on the upside, are critical for

disentangling the volatility risk premium from the jump risk premium as these two risk premiums

have drastically different implications on expected call option returns. We confirm the results of

Broadie, Chernov, and Johannes (2009) and Chambers et al. (2014) that the jump risk premium

fits put option data well, but we also show that the jump risk premium fails to match call option

returns. In contrast, the volatility risk premium is able to match the low returns on OTM call and

put options simultaneously.

The rest of the paper is organized as follows. Section 2 discusses related literature. Section 3

compares expected option returns implied from option pricing models to historical S&P 500 option

returns, with a particular focus on the effect of volatility and jump risk premiums. Section 4 studies

2In bad times, investors have concerns about both tails (variance) and OTM call options are also priced with a
significant premium. For example, buying a 1-month 5% OTM call in February 2009 and holding it to maturity
generated a return of –54%, despite the fact that the underlying index actually went up by 6.2% over the same
period. In contrast, a same 5% OTM call yielded a positive return of 841% from October 2004 to November 2004
during which the S&P 500 index went up by 6.3%.

3The two papers have different conclusions about whether index put option returns are consistent with standard
option pricing models with only equity risk premium (e.g., volatility and jump risks are not priced). Our analysis
confirms the results in Chambers et al. (2014) that the hypothesis of no additional risk premiums can be rejected in
general.
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the time series relationship between the volatility and jump risk premiums and future index option

returns. Section 5 contains robustness results, and Section 6 concludes the paper.

2 Related Literature

The bulk of the index option literature focuses on the behavior of option prices. For example,

it is well known that in the equity index options market implied volatilities from OTM put options

have been consistently higher than their ATM counterparts since the 1987 market crash (Rubinstein,

1994). This stylized fact is often referred to as the implied volatility skew or volatility smirk, and it

contradicts the prediction of the Black-Scholes-Merton model that the implied volatility is constant

across strikes.4 The presence of a pronounced volatility skew has inspired many subsequent studies.

For example, there is an extensive literature that demonstrates stochastic volatility and jumps are

needed in order to fit rich option price dynamics, although the empirical evidence is somewhat mixed

regarding the relative importance of these additional factors as well as their pricing. For important

contributions, see Bakshi, Cao, and Chen (1997), Bates (2000), Chernov and Ghysels (2000), Pan

(2002), Jones (2003), Eraker (2004), Broadie, Chernov, and Johannes (2007), and Andersen, Fusari,

and Todorov (2015).5 Our paper differs from this literature in that we examine option returns rather

than option prices. Understanding option returns is also important because option returns contain

additional information not spanned by option prices. For example, the low returns on OTM call

and OTM put options suggest that both are problematic, whereas one might wrongly conclude

that only OTM put options are problematic by observing the volatility skew only. We show that

a simple stochastic volatility model in which volatility risk is priced describes the average option

4Closely related, Aı̈t-Sahalia and Lo (1998), Jackwerth and Rubinstein (1996), and Jackwerth (2000) document
that the risk-neutral distribution inferred from option prices is not log-normal and systematically skewed more to
the left.

5Another strand of literature addresses the implied volatility skew in equilibrium models (e.g., Benzoni, Collin-
Dufresne, and Goldstein, 2011; Du, 2011; Seo and Wachter, 2017). Existing studies also suggest that the implied
volatility skew might be related to demand pressure (Bollen and Whaley, 2004; Gârleanu, Pedersen, and Poteshman,
2009), aversion to model uncertainty (Liu, Pan, and Wang, 2005), and investor sentiment (Han, 2007).
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returns reasonably well. This result is somewhat surprising because we know this model is not

rich enough to capture the behavior of option prices. Our results somewhat echo the findings of

Cochrane and Piazzesi (2005) for the bond market that although multiple factors are needed to

describe empirical patterns in bond prices, a single factor summarizes nearly all information about

returns/risk premiums. Johnson (2017) also reports similar results in the VIX market.

Our paper is closely related to an expanding literature that investigates index option returns.

Early studies usually focus on put options, finding surprisingly low returns for OTM index puts

(e.g., Bondarenko, 2014; Jackwerth, 2000). Coval and Shumway (2001) show that index call option

returns are positive and increase with the strike price, which is consistent with standard asset pricing

theories. On the other hand, Bakshi, Madan, and Panayotov (2010) document that the average

returns of OTM index call options are negative and decreasing with the strike price, and they relate

this otherwise puzzling finding to a U-shaped pricing kernel that arises in a model featuring short-

selling and heterogeneity in investors’ beliefs about return outcomes. We also find low returns on

OTM call options over our sample period.6 Related, several papers use factor models to gain a better

understanding of index option returns. See, among others, Jones (2006), Cao and Huang (2007),

and Constantinides, Jackwerth, and Savov (2013). Israelov and Kelly (2017) propose a method

for constructing the conditional distribution for index option returns. Driessen and Maenhout

(2007) and Faias and Santa-Clara (2017) analyze index option returns from a portfolio allocation

perspective. Santa-Clara and Saretto (2009) focus on the impact of margin requirements on option

trading strategies. Chaudhuri and Schroder (2015a) develop model-free tests of stochastic discount

factor monotonicity based on option returns.

There is a large body of literature on the pricing of volatility and jump risks. The pricing

of aggregate volatility and jump risks has been examined extensively in the cross-section of stock

returns.7 See, among others, Ang, Hodrick, Xing, and Zhang (2006), Adrian and Rosenberg (2008)

6Duarte, Jones, and Wang (2019) show that after correcting microstructure biases, expected call option returns
decrease with the strike price and deep OTM calls have negative returns.

7A number of studies examine the volatility risk premium using data on variance swaps. See, among others, Egloff,
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and Cremers, Halling, and Weinbaum (2015). Our paper is more closely related to studies that

focus on the pricing of aggregate volatility and jump risks in the equity index options market.

Index options market, where stochastic volatility and jump risks play a prominent role, contains

rich economic information about the pricing of these risk factors. For example, Coval and Shumway

(2001) report that zero-beta at-the-money straddle positions produce large losses and they interpret

it as evidence that systematic stochastic volatility is priced in option returns. Bakshi and Kapadia

(2003) find that delta-hedged option portfolios have negative average returns, which indicates the

volatility risk premium is negative. Our results are consistent with the findings of Coval and

Shumway (2001) and Bakshi and Kapadia (2003) that the volatility risk premium is negative in

the index options market. The key difference between the above studies and this paper is that

their emphasis is on using option portfolios to infer the existence and sign of the volatility risk

premium, while this paper aims to assess the impact of the volatility risk premium on the cross-

section of unhedged index option returns. We also characterize the effect of the jump risk premium

on expected option returns.

We also contribute to the variance risk premium literature. Carr and Wu (2009) quantify the

variance risk premiums on equity indexes and a set of individual stocks. Bollerslev, Tauchen, and

Zhou (2009), Drechsler and Yaron (2011), and Eraker (2012) study the equilibrium determinants

of the variance risk premium. Furthermore, existing studies find that the volatility risk premium

is a strong predictor of short term equity index returns (e.g., Bollerslev et al., 2009). Related,

Bali and Hovakimian (2009), Goyal and Saretto (2009), and Della Corte, Ramadorai, and Sarno

(2016) investigate the role of the volatility risk premium in predicting the cross-section of asset

returns. Our paper contributes to this literature by documenting that the volatility risk premium

contains predictive information about future option returns. It is important to note that the index

Leippold, and Wu (2010), Aı̈t-Sahalia, Karaman, and Mancini (2015), and Dew-Becker et al. (2017). Another strand
of literature provides additional evidence on the market volatility risk premium by comparing option implied volatility
with realized volatility. See, among others, Lamoureux and Lastrapes (1993), Fleming, Ostdiek, and Whaley (1995),
and Christensen and Prabhala (1998).
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option return predictability cannot be attributed to the underlying stock return predictability by the

volatility risk premium. Instead, both the sign and pattern of index option return predictability are

consistent with the impact of the volatility risk premium on expected option returns, as suggested

by option pricing theory.

3 The Volatility Risk Premium, the Jump Risk Premium

and Expected Option Returns

In this section, we begin by examining historical returns of S&P 500 index options across a wide

range of strikes, as well as the returns of a number of option portfolios. We then evaluate average

option returns relative to what would have been obtained in option pricing models. We investigate

whether index option returns are consistent with the pricing of volatility and jump risks.

3.1 Historical S&P 500 Index Option Returns

This paper focuses on historical returns from holding S&P 500 index options. We download

S&P 500 index options (SPX) data from OptionMetrics through WRDS. The sample period for

our analysis is from March 1998 to August 2015.8 In particular, on the first trading day after the

monthly option expiration date, we collect SPX options that will expire over the next month. These

options are the most frequently traded options in the marketplace and they have maturities ranging

from 25 to 33 calendar days. Prior to February 2015, the expiration day for index options is the

Saturday immediately following the third Friday of the expiration month. Starting in February

8OptionMetrics data starts from January 1996. However, the settlement values (SET) for SPX options required
to compute holding-to-maturity returns are only available from April 1998. As a result, we start sampling options
in March 1998. The settlement values for S&P 500 index options are calculated using the opening sales price in the
primary market of each component security on the expiration date and are obtained from the CBOE. We also extend
our sample to 1996 by using the closing price of the index as a proxy for the settlement price. The results are similar.
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2015, the option expiration day is the third Friday of the month.9 We also apply standard filters

to option data and relegate the details to Appendix A. Table A1 in the Online Appendix reports

the summary statistics of our sample. Table A1 shows that OTM options account for the majority

of the trading volume in S&P 500 index options, and OTM call options are as actively traded as

OTM put options.

Following the existing literature, we construct time-series of monthly holding-to-maturity returns

to S&P 500 index options for fixed moneyness, ranging from 0.96 to 1.08 for calls, and 0.92 to 1.04

for puts with an increment of 2%.10 Moneyness is defined as the strike price over the underlying

index: K/S. We do not investigate options that are beyond 8% OTM or 4% ITM because of

potential data issues (e.g., low price or low trading volume or missing observations).

We also compute returns on a number of option portfolios, including at-the-money straddles

(ATMS), put spreads (PSP), crash-neutral spreads (CNS), and call spreads (CSP). ATMS involves

the simultaneous purchase of a call option and a put option with K/S = 1. PSP consists of a short

position in a 6% OTM put and a long position in an ATM put. CNS consists of a long position in

an ATM straddle and a short position in a 6% OTM put. Finally, CSP combines a long position

in an ATM call with a short position in a 6% OTM call. When computing option returns, we

use the mid-point of bid-ask quotes as a proxy for option price, and we calculate option payoff at

maturity based on the index settlement values. Notice that Broadie, Chernov, and Johannes (2009)

and a subsequent study by Chambers et al. (2014) focus on index put options and several option

portfolios. We extend their analysis to include call options. Call options are claims on the upside,

which will be critical for differentiating the volatility risk premium from the jump risk premium.

In contrast, separately identifying the volatility and jump risk premiums using put option returns

can be challenging.

9This means we usually select options on Mondays. If Monday is an exchange holiday (e.g., Martin Luther King
Day or President’s Day), we use Tuesday data.

10Options have large bid-ask spreads, and monthly holding-to-maturity returns mitigate this problem because they
only incur the trading cost at initiation. Holding-to-maturity returns also have some analytical advantages and avoid
a number of theoretical and statistical issues associated with high frequency option returns (Broadie et al., 2009).
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Table 1 reports the average monthly returns for the cross-section of index call and put options

with different strikes, as well as the average returns for different option portfolios. Panel A of Table

1 shows that the average returns of call options tend to decline with the strike price, with OTM

calls earning a negative rate of return. For example, the average return of ATM calls is 6.5% per

month, and it drops monotonically to –25.05% for 8% OTM calls. Our results confirm the findings

of Bakshi, Madan, and Panayotov (2010), who study 1%, 3%, and 5% OTM S&P 500 call options

from 1988 to 2007. The call option return pattern is puzzling because under general economic

conditions Coval and Shumway (2001) show that the expected call option return is an increasing

function of the strike price and OTM call options should have positive returns.

Panel B of Table 1 presents the well-documented stylized fact that index put options, especially

OTM puts, have large negative average returns. For example, over our sample period, buying a 6%

OTM put and a 8% OTM put would, on average, lose 45.02% and 52.07% per month, respectively.

It is of course not surprising that put options have negative average returns as they are negative

beta assets. However, as shown in the next section, the magnitudes of OTM put option returns

are too large to be explained by standard option pricing models (e.g., the Black-Scholes-Merton

model).

Panel C reports average returns on option portfolios. Coval and Shumway (2001) find that

zero-beta straddles have negative average returns. We do not investigate zero-beta straddles as in

Coval and Shumway (2001), because constructing a zero-beta straddle would require a model to

determine the portfolio weights. Nevertheless, confirming their results, we find that simple ATM

straddles on average lose 8.47% per month over our sample period. Also notice that the average

return for call spreads is 13.56% per month. Call spreads earn high returns because both the long

position in ATM calls and the short position in 6% OTM calls generate positive returns as shown

in Panel A.

In summary, confirming existing studies, we show that OTM call options and OTM put options

are both associated with low average returns. In the next section, we investigate if these low option
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returns can be explained by option pricing models. In addition, we also examine if our models

can fit option portfolio returns. This is important because, as demonstrated in Broadie, Chernov,

and Johannes (2009), option portfolios are more informative than individual option returns and

therefore provide more powerful tests.

3.2 Analytical Framework for Expected Option Returns

Statistical inference on option returns is in general difficult because option returns are highly

non-normal, which makes the standard linear models inappropriate. To overcome these statistical

difficulties, we apply the methodology developed in Broadie, Chernov, and Johannes (2009) (hence-

forth BCJ). In particular, we compare the average returns in the data with expected option returns

implied by various option pricing models estimated over the same period. We also simulate each

model to form a finite sample distribution for testing statistical significance.

We consider a standard affine jump diffusion framework with mean-reverting stochastic volatility

and jumps in stock price. The model is commonly referred to as the SVJ model (Bates, 1996)

and nests the Black-Scholes-Merton model (Black and Scholes, 1973; Merton, 1973), the Heston

stochastic volatility model (Heston, 1993), and the Merton jump diffusion model (Merton, 1976) as

special cases. The SVJ model says the index level (St) and its spot variance (Vt) have the following

dynamics under the physical measure (P):

dSt = (µ+ r − d)Stdt+ St
√
VtdW1 + (eZ − 1)StdNt − λµStdt

dVt = κ(θ − Vt)dt+ σ
√
VtdW2

where µ is the equity risk premium, r is the risk-free rate, d is the dividend yield, Nt is a P-measure

Poisson process with a constant intensity λ, Z ∼ N(µz, σ
2
z), µ is the mean jump size with µ =

exp(µz + 1
2
σ2
z)− 1, θ is the long-run mean of variance, κ is the rate of mean reversion, σ is volatility

of volatility, and W1 and W2 are two correlated Brownian motions with E[dW1dW2] = ρdt. The
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dynamics under the risk-neutral measure (Q) are given by:

dSt = (r − d)St + St
√
VtdW

Q
1 + (eZ

Q − 1)StdN
Q
t − λQµQStdt

dVt = [κ(θ − Vt)− ηVt]dt+ σ
√
VtdW

Q
2

where η is the price of volatility risk, NQ
t ∼ Poisson(λQt), ZQ ∼ N(µQ

z , (σ
Q
z )2) and µQ = exp(µQ

z +

1
2
(σQ

z )2)−1. Throughout the paper, risk neutral quantities will be denoted with Q and all other

quantities are taken under the physical measure. Note that there are three types of risk premiums

in this model: the equity risk premium (µ), the volatility risk premium (ηVt), and the jump risk

premium (price jump has different distributions under P and Q probability measures).

Expected option returns can be computed analytically within the above framework.11 This

analytical tractability is particularly useful as we can quantify the impact of different risk premiums

on expected option returns. We first compute expected call and put option returns as well as

expected returns on option portfolios using models with only an equity risk premium, including the

Black-Scholes-Merton model (BSM), a Heston model in which volatility risk is not priced (SV), and

a stochastic volatility jump model in which neither volatility risk nor jump risk is priced (SVJ).

As we will see, these models will not be able to fit index option return data as they only have the

equity risk premium. In light of these results, we further investigate if option pricing models with

additional volatility and jump risk premiums can lead to a better fit. In particular, we also examine

a stochastic volatility model in which volatility risk is priced (SV+), but otherwise identical to the

SV model. To study the effect of the jump risk premium, we extend the SVJ model to incorporate

a risk premium for jump risk (SVJ+). Note that in the SVJ+ model, volatility risk is not priced.

By setting the volatility risk premium to zero (η = 0), we can isolate the effect of the jump risk

11The intuition is that since physical dynamics are also affine, expected option payoffs and consequently expected
returns can be computed analytically. For models with stochastic volatility and jumps, the conditional expected
option return is a function of spot variance which has a gamma distribution. We take a numerical integration over
gamma distribution to obtain unconditional expected option returns.
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premium. In total, we calculate expected option returns for five different option pricing models:

Three with the equity risk premium only (BSM, SV, and SVJ), one with the additional volatility

risk premium (SV+), and one with the additional jump risk premium (SVJ+).

Following BCJ, we also simulate each model to form a finite-sample distribution of average

option returns, from which we can test whether realized historical option returns are significant

relative to a model (e.g., how likely it is to observe historical returns in a given model). Specifically,

we simulate 25000 sample paths of the index, with each path having 210 months (the sample length

of our data). For each sample path, we compute one set of average option returns using simulated

data. The p-values are then calculated as the percentile of historical option returns in the 25000

simulated options returns. If the percentile is higher than 0.5, we report the p-value as 1 minus the

percentile.

We estimate model parameters in two steps as in BCJ. We first infer physical measure parameters

by calibrating the models to fit the behavior of index returns over the same sample period for which

option returns are available.12 Specifically, we calibrate the equity risk premium, the risk-free rate,

and the dividend yield based on those realized over our sample period. We use particle filtering

to estimate the remaining P-measure parameters from the time-series of index returns. Appendix

B describes the details. Second, we obtain estimates of the volatility and jump risk premiums by

observing that in a standard power utility framework (e.g., Bakshi and Kapadia, 2003; Broadie,

Chernov, and Johannes, 2009; Christoffersen, Heston, and Jacobs, 2013; Naik and Lee, 1990), the

risk adjustment for volatility risk is given by:

ηVt = Cov(γ
dSt
St
, dVt) =⇒ η = γσρ (1)

12Realized option returns are highly dependent on the sample, and therefore it is necessary to estimate a model
over the same period for which a model is asked to explain option returns.
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and the risk adjustment for price jump risk is given by:

λQ = λ exp(−µzγ +
1

2
γ2σ2

z)

µQ
Z = µz − γσ2

z .

(2)

where γ is relative risk aversion of the agent. For our benchmark analysis, we follow BCJ and

assume a risk aversion of 10. Note that we do not use option data to estimate model parameters

because as BCJ point out, this approach might be problematic for our purpose because we would

be explaining option returns using information extracted from option prices in the first place.

Table 2 reports (annualized) parameter values that we use for computing expected option returns

and simulations. Our parameter estimates are within the reasonable range reported in the literature.

For the BSM model, the constant volatility parameter is set equal to the square root of the long

run mean of stock variance (θ) in the SV model (σBSM = 19.05%). For the volatility risk premium,

given a risk aversion of 10 and a negative ρ, equation (1) indicates that the volatility risk premium

parameter η must be negative and is equal to –4.347. Pan (2002) finds that the magnitudes of the

volatility risk premium needed to reconcile time-series and option-based spot volatility measures

imply explosive risk-neutral volatility dynamics (κ + η < 0). In contrast, our calibration does

not have this issue: The volatility process under the risk neutral measure remains mean-reverting

(κ + η > 0). Consistent with the notion that investors fear large adverse price jumps, the risk

corrections in equation (2) indicate that price jumps occur more frequently and more severely

under the risk-neutral measure. Our estimates imply about 1.50 jumps per year on average (λQ =

1.4969) and a mean jump size of –6.67% (µQ
z = −0.0667) under Q probability measure, and about

0.97 jumps per year on average (λ = 0.9658) with a mean jump size of –2.09% (µz = −0.0209)

under P probability measure. We perform an extensive sensitivity analysis with respect to the

parameterizations of stochastic volatility and jumps, and the risk aversion parameter in Section 5.1.
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3.3 Results

Table 3 compares expected option returns implied from models with only an equity risk premium

(BSM, SV, and SVJ) to data. Realized historical option returns taken from Table 1 are denoted

by “Data”. Expected option returns computed analytically are labeled as “Ep”. We also report the

average simulated option returns, denoted by “Simulation”. Not surprisingly, these two are very

close to each other.

First of all, confirming the results of Chambers, Foy, Liebner, and Lu (2014), Panel B shows

that models with only an equity risk premium can be rejected by OTM put option returns. While

these models do imply a correct pattern that returns become more negative as put options move

further away from the money, the magnitudes seem too small to be consistent with the data. For

example, a 4% OTM put has an average return of –37.86% in the data, which is much larger than

the expected returns implied from the three models: –12.24% (BSM), –10.20% (SV), and –9.16%

(SVJ).13 The return differences are also statistically significant at 10% with a p-value of 0.04, 0.08,

and 0.07. A p-value of 0.04 means that only 4% of the 25000 simulated average put returns are less

than the realized return –37.86%.

Panel A of Table 3 shows that option pricing models with the equity risk premium only are

also inconsistent with the empirical call option return pattern. Specifically, all three models predict

an overall increasing relationship between call option returns and the strike price with OTM calls

earning large positive returns, which is contrary to the data. Interestingly, despite the return

differences for OTM calls being large between data and the models, p-values indicate that only the

BSM model can be rejected (based on 6% and 8% OTM calls). Broadie, Chernov, and Johannes

(2009) show that the statistical uncertainty is substantial for put returns. Our analysis further

suggests that statistical uncertainty is even greater for call returns.

13Expected put option returns in the SV and SVJ models are actually less negative than those in the BSM model,
despite the fact that the two models are able to generate a volatility skew. In other words, the volatility skew per se
does not imply large negative returns unless the skew is driven by risk premiums (e.g., volatility and jump risks are
priced).
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Panel C reports results based on option portfolio returns. Returns on option portfolios are more

informative and provide stronger tests. For example, while the SV model and the SVJ model cannot

be rejected by ATM calls or ATM puts individually, they can be rejected based on ATM straddles

which consist of ATM calls and ATM puts. Furthermore, the SV model and the SVJ model are

also rejected by crash neutral spread returns.

In summary, we conclude that option pricing models with only an equity risk premium are not

consistent with the observed index option returns and therefore index option returns would appear

puzzling to those models.

Table 4 reports expected option returns for the SV+ model in which volatility risk is priced.

When a volatility risk premium is incorporated, expected option returns are able to match the

average returns of call and put options across all strikes as well as the average returns of option

portfolios. In particular, consistent with the data, the pricing of volatility risk implies that the

expected call option return tends to decrease with the strike price, especially over the out-of-the-

money range. For example, the expected return drops monotonically from 5.14% per month for

ATM calls to –22.54% for 8% OTM calls. This result sharply contrasts with models with only an

equity risk premium where the expected call option return is an increasing function of the strike

price. On the put option side, we find that expected put option returns are more negative in the

presence of the volatility risk premium, which again is consistent with the data. Finally, Panel C

shows that the pricing of volatility risk is also consistent with option portfolio returns. The p-values

suggest that in all cases realized historical average option returns are not statistically significantly

different from those generated by the SV+ model.

Table 5 reports expected option returns when jump risk is priced but volatility risk is not

(SVJ+). Confirming the findings of Broadie, Chernov, and Johannes (2009) and Chambers et al.

(2014), Panel B shows that the pricing of jump risk implies that put options have large negative

expected returns, which is consistent with the data. While the jump risk premium matches put

returns very well, it fails to explain index call option returns. Specifically, Panel A shows that
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when jump risk is priced, there is an increasing relation between expected call option returns and

the strike price with OTM calls earning large positive returns, which is contrary to the data. This

finding about the jump risk premium is not due to our parameterization. We also use parameters

reported in Broadie, Chernov, and Johannes (2009) and Chambers et al. (2014) and find very

similar results. Section 5.1 contains additional discussion. Note that because OTM call options in

the SVJ+ model have very large return standard deviations, the model actually cannot be rejected

despite the fact that it generates a wrong return pattern. However, portfolio-based evidence in

Panel C shows that the SVJ+ model can be rejected by call spread returns. The average monthly

return of call spreads is 13.56% in the data, much higher than the model-implied return of 1.46%.

The difference is statistically significant with a p-value of 0.04.

Figure 1 summarizes our findings by plotting expected option returns in Tables 3 to 5 against the

strike price. For comparison, we also include the average returns in the data. Panel A shows that the

volatility and jump risk premiums have drastically different predictions on OTM call options. The

jump risk premium implies that expected returns of OTM call options are positive and increasing

with the strike price, which is similar to models with the equity risk premium only. In contrast, the

volatility risk premium predicts a decreasing relationship between expected returns and the strike

price, with OTM calls earning large negative returns. Panel B shows that all models yield similar

predictions on puts in that expected put option returns should be negative and increasing with the

strike price. However the jump risk premium yields the most negative estimates, followed by the

volatility risk premium.

The volatility and jump risk premiums affect expected option returns because they induce

changes in the risk-neutral index return distribution under which option prices are determined.

A negative volatility risk premium will add probability mass to both tails and thus increase the

value of both OTM calls and OTM puts, which leads to lower expected returns. On the other hand,

the jump risk premium has two effects on the risk-neutral distribution. First, the presence of a

jump risk premium will result in a more negatively-skewed risk neutral distribution. This, in turn,

17



will increase the value of OTM put options and decrease the value of OTM call options. Second,

the jump risk premium also tends to fatten both tails. For OTM put options, both effects will lead

to a higher valuation and this is the reason expected put option returns are much more negative

in the presence of a jump risk premium. On the other hand, for OTM calls, the skewness effect

tends to dominate under plausible parameterizations and therefore the presence of the jump risk

premium will result in higher expected returns for OTM call options.14

Our analysis shows that a simple stochastic volatility model in which volatility risk is priced

describes the average option returns reasonably well. This result is somewhat surprising because we

know the stochastic volatility model is not rich enough to capture the behavior of option prices.15 As

discussed in Section 2, there is an extensive literature that demonstrates several factors are needed

to fit the rich dynamics of option prices. Our results are nevertheless consistent with the findings

of Cochrane and Piazzesi (2005) for the bond market that although multiple factors are needed to

describe empirical patterns in bond prices, a single factor summarizes nearly all information about

risk premium/returns. Johnson (2017) also reports similar results in the VIX market.

3.4 The Effect of the Volatility Risk Premium: Further Investigation

In this section, we analyze how expected option returns vary with respect to changes in the

volatility risk premium. Based on the same parameter values reported in Table 2, Figure 2 plots

expected returns on call options, put options, and straddles in the SV+ model as a function of risk

aversion γ for different moneyness. A higher γ implies a larger volatility risk premium (more nega-

tive) as shown in equation (1). Figure 2 reveals several interesting results. First, as γ increases (e.g.,

14If one ignores the equilibrium restrictions and allows the variance of jump size to take different values under the
physical and risk neutral measures, expected option returns become even more complicated and can exhibit different
patterns. See Branger, Hansis, and Schlag (2010) for a related discussion.

15The empirical shortcomings of the SV model are of course well-documented. For example, the estimated SV model
often generates a steeply upward-sloping term structure of implied volatility, which is incompatible with the observed
term structure. Moreover, the model implies the instantaneous change in volatility is Gaussian and homoskedastic,
thus unable to capture the sudden and abrupt moves in the observed volatility dynamics. For detailed discussions,
see Bates (2003), Broadie, Chernov, and Johannes (2007), and Christoffersen, Jacobs, and Mimouni (2010).
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the volatility risk premium becomes more negative), expected returns on calls, puts, and straddles

monotonically decrease regardless of moneyness. Again, this is because a negative volatility risk

premium makes options more expensive. However, the magnitude of this effect highly depends on

the moneyness. In particular, the relation between the volatility risk premium and expected option

returns is much stronger for OTM calls and OTM puts with the steepest slope. As options move

towards the in-the-money direction, the slope flattens out as expected returns become less sensitive

to the volatility risk premium. On the other hand, straddles have their own unique pattern. ATM

straddle returns are more sensitive to changes in the volatility risk premium as compared to their

ITM and OTM counterparts. We test these predictions in Section 4.

Figure 2 also helps understand why the volatility risk premium fits index option returns well.

As discussed, a negative volatility risk premium increases option value, which then leads to a lower

expected return. Moreover, this effect is disproportionately stronger for out-of-the-money options.

As a result, the pricing of volatility risk is able to generate not only a steeper relation between

expected put option returns and the strike price, with OTM put options earning large negative

returns, but also a decreasing relation between expected call option returns and the strike price,

with OTM calls having negative expected returns.

4 Time Series Analysis

The previous section shows that the presence of a negative volatility risk premium decreases

expected option returns. Moreover, the effect of the volatility risk premium is stronger for OTM

options and ATM straddles. We formally test these predictions by investigating the time series

relationship between the volatility risk premium and future index option returns. We also examine

how the jump risk premium is related to future option returns.
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4.1 The Volatility Risk Premium and Future Option Returns

To test the differential impact of the volatility risk premium on expected option returns, we

estimate the following time-series predictive regressions at monthly frequency:

option retit, t+1 = αi + βiVRPt + ε, i ∈ {call, put, straddle} (3)

where the dependent variable option ret is the returns from holding call options, put options and

straddles from month t to month t+1. The analysis in Section 3.4 suggests that options with different

moneyness have different sensitivities with respect to the volatility risk premium and therefore we

estimate the above regressions separately for different moneyness groups. In particular, for call

options, we consider the following three groups: 0.96 <= K/S < 1.00, 1.00 <= K/S < 1.04, and

1.04 <= K/S < 1.08. For put options, we consider 0.92 <= K/S < 0.96, 0.96 <= K/S < 1.00,

and 1.00 <= K/S < 1.04. Again we do not investigate options that are beyond 8% OTM or 4%

ITM in light of potential data issues. For straddles, we consider the following three moneyness

groups: 0.94 <= K/S < 0.98, 0.98 <= K/S < 1.02, and 1.02 <= K/S < 1.06.

Following the definition of the equity risk premium, we define the volatility risk premium as the

difference between physical and risk neutral expectations of future realized volatility:

VRPt = Et(RVt,t+1)− EQ
t (RVt,t+1).

The volatility risk premium is constructed each month on the option selection date and will be used

to forecast option returns over the following month. For the baseline results, we follow Bollerslev,

Tauchen, and Zhou (2009) and measure the volatility risk premium as the difference between realized

volatility and the VIX index:

VRPt = RVt−1,t − V IXt

where realized volatility is computed based on 5-min log returns on S&P 500 futures over the past
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30 days.16 The VIX index is published by the Chicago Board Options Exchange (CBOE), and it

tracks 30-day risk neutral expectation of future realized volatility.17 In the robustness analysis, we

show that our empirical results are not sensitive to the measurement of the volatility risk premium.

For example, instead of using realized volatility, we also estimate expected physical volatility and

find similar results. Figure A1 in the Online Appendix plots realized volatility, the VIX, and the

volatility risk premium throughout our sample period. Consistent with the findings in Todorov

(2010) and Carr and Wu (2009), Figure A1 shows that the volatility risk premium, like volatility

itself, is also time varying.

Panel A of Table 6 reports regression results for call options. For call options that are be-

tween 4% and 8% OTM, the volatility risk premium is positively related to future returns with a

statistically significant coefficient. The t-statistic is 2.11 and the adjusted R2 of the regression is

0.99%. Throughout the paper, t-statistics are computed using Newey-West standard errors with

four lags (Newey and West, 1987, 1994). Interestingly, this relationship between the volatility risk

premium and call returns weakens as call options move towards the in-the-money direction. The

slope coefficient, t-stat, and R2 all decrease monotonically.

Panel B shows that there is a positive relationship between the volatility risk premium and future

index put option returns. Similar to calls, this relation becomes increasingly weak as put options

move towards the in-the-money direction, judging by the slope coefficient, statistical significance,

and R2. For example, among put options that are between 4% OTM and 8% OTM, the slope

coefficient is estimated to be 8.37 with a Newey-West t-statistic of 2.21 and an adjusted R2 of

16The use of intra-day data is motivated by the realized volatility literature that demonstrates the critical role of
high frequency data in volatility measuring and modeling. See, among others, Andersen et al. (2001), Andersen et al.
(2003), and Barndorff-Nielsen and Shephard (2002). Following the literature, we focus on 5-min returns to avoid
potential microstructure effects. Liu et al. (2015) find that it is difficult to outperform 5-minute realized variance
even with more sophisticated sampling techniques. We also treat overnight and weekend returns as an additional
5-min interval.

17The CBOE developed the first-ever volatility index in 1993, which then was based on the average implied
volatilities of at-the-money S&P 100 options. In 2003, the CBOE started publishing a new index that is calculated
using S&P 500 index option prices in a model-free manner. We use the new VIX index. For more details on the
model-free approach, see for example Dupire (1994), Neuberger (1994), Britten-Jones and Neuberger (2000), and
Jiang and Tian (2005).
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2.04%. In contrast, among put options that are between ATM and 4% ITM, the slope coefficient is

only 2.70 and not statistically significant.

Panel C shows that the volatility risk premium also exhibits a positive relation with future

straddle returns, but with a different pattern. In particular, the relationship between the volatility

risk premium and future returns is stronger for at-the-money straddles. As straddles move away

from the money, this relation is only marginally significant.

In summary, we find that the volatility risk premium is positively related to future index option

returns: A more negative volatility risk premium in a given month is associated with lower option

returns in the subsequent month. This positive relationship is consistent with the theoretical pre-

diction that a negative volatility risk premium leads to lower expected option returns. We also find

that the relationship between the volatility risk premium and future option returns is stronger for

OTM calls, OTM puts, and ATM straddles. This pattern is also consistent with the prediction

that the effect of the volatility risk premium varies across moneyeness, and OTM options and ATM

straddles are more sensitive to changes in the volatility risk premium. In Appendix C, we show

that the positive relationship between the volatility risk premium and future option returns is also

economically significant and can be translated into large economic gains.

Bollerslev, Tauchen, and Zhou (2009), among others, document that the volatility risk premium

predicts future index returns at short horizons. Therefore, a natural interpretation of our finding

is that it is merely a manifestation of the underlying index return predictability afforded by the

volatility risk premium. While this explanation appears plausible, it can be ruled out based on

the fact that the volatility risk premium forecasts future option returns with the same sign: A

more negative volatility risk premium this month is associated with lower option returns in the

subsequent month. If option return predictability were caused by stock return predictability, then

one would observe opposite signs for calls and puts because the expected call (put) option return

increases (decreases) with the expected stock return. Instead we argue that the economic source of

option return predictability is due to the time-varying volatility risk premium embedded in index
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options.

4.2 The Jump Risk Premium and Future Option Returns

We also investigate how the jump risk premium is related to future option returns. Dennis and

Mayhew (2002) and Bakshi and Kapadia (2003) establish the link between risk neutral skewness

and the slope of the implied volatility curve, and therefore we use the difference in average implied

volatilities (IV OL) between OTM and ATM put options as a proxy for the jump risk premium:

JUMPt = IV OLOTM,t − IV OLATM,t (4)

where OTM and ATM refer to put options with 0.90 =< K/S <= 0.94 and 0.98 =< K/S <= 1.02,

respectively.

Table A2 in the Online Appendix reports the regression results with the jump risk premium.

Panel A indicates that the jump risk premium is not informative about future call option returns.

It is insignificant across all moneyness groups and R2s are close to zero. Panel B shows that the

jump risk premium is negatively and significantly related to future OTM put option returns with a

Newey-West t-statistic of –2.94 and an adjusted R2 of 1.45%. We find a larger jump risk premium in

a given month is associated with lower OTM put option returns in the subsequent month. Panel C

shows that the jump risk premium does not contain predictive information about straddle returns.

In summary, we conclude that the jump risk premium is informative about future OTM put

option returns, but its relationship with future call and straddle returns is insignificant.

5 Robustness

This section includes several robustness checks. We study how different parameterizations might

affect expected option returns. We also investigate the robustness of the empirical relationship
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between the volatility risk premium and option returns to a number of implementation choices.

5.1 Parameters

Our main analysis shows that the presence of the volatility risk premium implies that both

OTM calls and OTM puts should earn large negative expected returns, which is consistent with

the data. On the other hand, the jump risk premium implies that OTM put options should have

large negative expected returns, whereas OTM call options should have large positive returns. In

this section, we assess how these conclusions might be affected by different parameterizations with

respect to both physical measure parameters and the risk aversion parameter.

Table 7 recalculates expected option returns in the SV+ model by increasing/decreasing each

P-measure parameter by one standard deviation. We continue to assume a risk aversion of 10

when computing expected option returns. The results suggest that expected option returns are

not sensitive to changes in P-measure parameters, and overall expected returns are very close to

those obtained with our baseline parameterization. For example, it is well-known that the volatility

mean reverting parameter κ is notoriously difficult to pin down precisely. However, its impact on

expected option returns turns out to be quite small: Decreasing or increasing it by one standard

deviation produces very similar expected returns.

Table 8 reports expected option returns in the SV+ model by changing the risk aversion param-

eter from 0 to 20. For P-measure parameters, we use our baseline estimates reported in Table 2.

Table 8 shows that risk aversion (and therefore risk premium) has a much larger effect on expected

option returns, especially for OTM options. When risk aversion is equal to zero (e.g., volatility risk

is not priced), the SV+ model collapses to the SV model and both expected call and put option

returns increase with the strike price. As risk aversion increases, namely the volatility risk premium

becomes more negative, expected option returns decrease. Notice that in order for the volatility

risk premium to match the data, risk aversion should be relatively high.
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We also compute expected option returns using the variance-dependent pricing kernel of Christof-

fersen, Heston, and Jacobs (2013). Their variance-dependent pricing kernel, when projected onto

the stock return, is U-shaped and able to explain a range of option anomalies.18 With this particular

pricing kernel, Christoffersen, Heston, and Jacobs (2013) show that the volatility risk premium has

the following two factor structure:

η = γσρ− ξσ2 (5)

where the first term is related to risk aversion as before, and the second term originates from

variance preferences ξ which, according to Christoffersen, Heston, and Jacobs (2013), should be

positive. Table A3 repeats the same exercise in Table 8 but using the new specification of the

volatility risk premium in equation (5). With a variance-dependent pricing kernel, risk aversion

needed to fit option returns is small.

Tables A4 and A5 in the Online Appendix report the corresponding results for the SVJ+ model.

Tables A4 investigates if expected option returns are sensitive to our characterization of jump process

under the physical measure by increasing or decreasing each jump parameter by one standard

deviation. We only focus on jump-related parameters because, as already demonstrated, expected

option returns do not vary much with parameters associated with stochastic volatility. Overall, we

find the return patterns are similar to our benchmark case. Specifically, the jump risk premium

would imply very large negative expected returns for OTM put options, which is consistent with

the data. However, it would also imply that expected OTM call option returns are positive and

increasing with the strike price, which is not consistent with the data.

Table A5 reports the effect of risk aversion on expected option returns in the SVJ+ model. An

increase in risk aversion leads to a larger jump risk premium, meaning price jumps occur more

18Many papers find that the pricing kernel is not a monotonically decreasing function of index returns. See, among
others, Aı̈t-Sahalia and Lo (1998), Jackwerth (2000), Rosenberg and Engle (2002), and Chaudhuri and Schroder
(2015b). On the other hand, Linn, Shive, and Shumway (2018) point out potential biases in the existing estimates
of the pricing kernel. After properly accounting for the conditioning information, they show the pricing kernel is
monotonically decreasing with index returns.
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frequently and more severely under the risk neutral measure. Overall Table A5 shows that while

the jump risk premium is able to match put option returns easily, its implications on call options

are in general inconsistent with the data. For example, across a wide range of risk aversion values,

expected returns on OTM calls are positive and increasing with the strike price. If risk aversion is

high enough (e.g., 20), it is possible to observe negative expected returns on OTM calls. However, a

very large risk aversion would also imply that ATM and ITM calls have negative expected returns,

which is not consistent with the data.

5.2 The Measurement of the Volatility Risk Premium

In the main analysis, we measure the volatility risk premium as the difference between realized

volatility and the VIX. In other words, we assume that volatility follows a random walk and lagged

realized volatility is an unbiased estimate of expected volatility. To ensure our empirical results are

not driven by this assumption, we also estimate expected physical volatility using the heterogeneous

autoregressive model (the HAR model) proposed by Corsi (2009). In particular, we obtain condi-

tional forecasts of future volatility by projecting realized volatility onto lagged realized volatilities

computed over difference frequencies:

logRVt,t+1 = δ0 + δ1 logRVt−1,t + δ2 logRV W
t + δ3 logRV D

t + ε

where RVt−1,t is realized volatility over the past month, and RV W
t and RV D

t denote realized volatil-

ities over the past week and day, respectively. Because realized volatilities are approximately log-

normally distributed (Andersen et al., 2001), it is more appropriate to forecast the logarithmic of

realized volatilities with linear models. The log specification also ensures that volatility forecasts

always remain positive. We estimate the above model based on the full sample and take the fitted
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values as expectations of future realized volatility:

Et(RVt,t+1) = exp(δ0 + δ1 logRVt−1,t + δ2 logRV W
t + δ3 logRV D

t +
1

2
σ2
ε ).

Finally we compute the difference between Et(RVt,t+1) and the VIX to obtain the volatility risk

premium estimates.

Table 9 contains results with this new measure of the volatility risk premium. Consistent with

our benchmark findings, the volatility risk premium is positively related to future option returns,

and this relationship is stronger for OTM options and ATM straddles. We also find similar results

when using daily returns to compute physical volatility or using the average option implied volatility

as a proxy for risk neutral volatility.

5.3 Controlling for Other Variables

Our main analysis documents a positive relationship between the volatility risk premium and

future option returns in univariate regressions. In this section, we investigate if the volatility risk

premium is robust to controlling for other variables including the jump risk premium and the level

of volatility. Given the results are stronger for OTM options and ATM straddles, we will focus on

these options only.

Table 10 reports the results for multivariate regressions. Specification (1) controls for the jump

risk premium. After including the jump risk premium as a control, we find the volatility risk

premium remains statistically significant. We also find that the volatility risk premium does not

subsume the jump risk premium: The jump risk premium is still negatively and significantly related

to future OTM put option returns. This suggests that the volatility and jump risk premiums are

both informative about OTM put option returns.

Specification (2) of Table 10 controls for the level of volatility. Including volatility as a control

does not change our results. The volatility risk premium remains significant in all cases. Note that
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volatility itself is also related to future option returns. Specifically, volatility is negatively related

to future straddle returns and call returns, but positively related to future put returns, although

the relationship is not always statistically significant. These results are broadly consistent with the

analysis in Hu and Jacobs (2017).

Specification (3) shows that our findings remain robust when including both controls. Finally,

Table A6 in the Online Appendix shows that the positive relationship between the volatility risk

premium and future option returns is also robust to controlling for option betas.

In the main analysis, we study the predictive relation between the volatility risk premium and

holding-to-maturity index option returns. Table A7 examines if our empirical findings persist to

other holding periods. In particular, instead of holding options to maturity, we consider a holding

period of half month (15 calendar days). We find very similar results with holding-period option

returns.

6 Conclusion

Out-of-the-money S&P 500 index call and put options are both associated with large negative

average returns. We argue that the low returns on OTM options are primarily due to the pricing

of market volatility risk. When volatility risk is priced, expected option returns are consistent

with realized historical index option returns across all strikes as well as the returns of a number of

option portfolios. Further corroborating the volatility risk premium hypothesis, we document that

the volatility risk premium is positively related to future option returns, and this relationship is

stronger for OTM options and ATM straddles. These findings are consistent with the differential

effect of the volatility risk premium on expected option returns. Overall, our results suggest that

the pricing of volatility risk has a first-order effect on the cross-section of index option returns.

On the jump risk premium side, we find that the pricing of jump risk is also important and some

portion of OTM put option returns are related to the jump risk premium.
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This paper can be extended in several ways. First, in our theoretical analysis we assume there

is only one factor that drives time-varying stochastic volatility. In the data, volatility dynamics are

much more complex and our analysis can be extended to take this into account.19 Second, we have

focused on the one-month maturity and extensions to investigating the term structure would be

useful. Third, we consider index option returns in the U.S. market, and it may prove interesting to

extend our analysis to international data. We plan to address these in future research.

19Existing studies find that two factors are needed in order to characterize the volatility dynamics. See, among
others, Alizadeh, Brandt, and Diebold (2002), Engle and Rangel (2008), and Christoffersen, Heston, and Jacobs
(2009). Another strand of literature emphasizes the importance of incorporating jumps into the volatility dynamics.
See, among others, Broadie, Chernov, and Johannes (2007) and Eraker, Johannes, and Polson (2003).
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Appendix A: Sampling Index Option Data

An option is included in the sample if it meets all of the following requirements.

1) The best bid price is positive and the best bid price is smaller than the best offer price.

2) The price does not violate no-arbitrage bounds: For call options we require that the price of

the underlying exceeds the best offer, which is in turn higher than max(0, S −K). For put options

we require that the exercise price exceeds the best bid, which is in turn higher than max(0, K−S).

3) Open interest is positive.

4) Volume is positive.

5) The bid-ask spread exceeds $0.05 when the option price is below $3, and $0.10 when the

option price is higher than $3.

6) The expiration day is standard.

7) Settlement is standard.

8) Implied volatility is not missing.

9) Secid = 108105.

Appendix B: Particle Filtering Using Returns

In this appendix, we discuss the estimation of the SVJ model. The estimation of the SV model

follows accordingly by ignoring the jump component. We first time-discretize the SVJ model.

Applying Euler discretization and Ito’s lemma, we can rewrite the SVJ model as:

Rt+1 = ln(
St+1

St
) = µ+ r − d− Vt/2 +

√
Vtz1,t+1 + Jt+1Bt+1

Vt+1 − Vt = κ(θ − Vt) + σ
√
Vtz2,t+1

where z1,t+1 and z2,t+1 are standard normal shocks. Bt+1 and Jt+1 are the jump occurrence and
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jump size. We implement the discretized model using daily S&P 500 index returns.

We have two sets of unknowns: 1) parameters Θ(κ, θ, σ, ρ, λ, µz, σz) and 2) latent states {Vt}.

We use particle filtering to filter the latent states and adaptive Metropolis-Hastings sampling to

perform the parameter search.

The particle filtering algorithm relies on the approximation of the true density of the state

Vt by a set of N discrete points or particles that are updated iteratively through variance pro-

cess. Throughout the estimation, we use N = 10, 000 particles. Below we outline how Sequential

Importance Resampling (SIR) particle filtering is implemented using the return data.

Step 1: Simulating the State Forward

For i = 1 : N , we first simulate all shocks from their corresponding distribution:

(z1,t+1, z2,t+1, Bt+1, Jt+1)
i

where the correlation between the innovations is taken into account. Then, new particles are

simulated according to the equation below:

Vt = Vt−1 + κ(θ − Vt−1) + σ
√
Vt−1z2,t.

Note that period t + 1 shocks affect Rt+1 and Vt+1, and thus to simulate Vt, we in fact need z2,t

from the previous period. We record z2,t+1 for the next period for each particle.

Step 2: Computing and Normalizing the Weights

Now we compute the weights according to the likelihood for each particle i = 1 : N :
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ωit+1 = f(Rt+1|V i
t )

=
1√

2πV i
t

exp

{
−1

2

[
Rt+1 − (µ+ r − d− 1

2
V i
t − λµ̄+ Jt+1Bt+1)

]2
V i
t

}

The normalized weights πit+1 are calculated as:

πit+1 = ωit+1/

N∑
j=1

ωjt+1

Step 3: Resampling

The set
{
πit+1

}N
i=1

can be viewed as a discrete probability distribution of Vt from which we can

resample. The resampled {V i
t }

N
i=1 as well as its ancestors are stored for the next period.

The filtering for period t+1 is now done. The filtering for period t+2 starts over from step 1 by

simulating new particles based on resampled particles and shocks from period t + 1. By repeating

these steps for all t = 1 : T , particles that are more likely to generate the observed return series

tend to survive till the end, yielding a discrete distribution of filtered spot variances for each day.

Appendix C: Option Trading Strategies

To assess the economic significance of the predictive relationship between the volatility risk

premium and future option returns, we propose a trading strategy that exploits option return

predictability in the context of selling index options. Writing index options is popular because

historically it tends to yield higher returns by collecting the volatility risk premium. Since the

volatility risk premium is positively associated with future option returns, a simple strategy would be

to sell options only in months when the volatility risk premium is negative. This strategy relies only

on an ex-ante market signal and does not require investors to estimate any model. Moreover, since

32



return predictability is significant among out-of-the-money options and at-the-money straddles, we

will test the performance of the new trading strategy in the context of selling a 4% OTM call, a 6%

OTM call, a 4% OTM put, a 6% OTM put, and an ATM straddle. As a benchmark, we consider a

strategy that writes options in every month of the sample. The new strategy is called “VRP < 0”,

and the benchmark strategy is called “Always”. The performance of the S&P 500 over the same

period is also included for comparison.

Table A8 in the Online Appendix shows that our new strategy outperforms the benchmark

strategy. Taking ATM straddles as an example, following our strategy, one would obtain a monthly

average return of 0.106 with a Sharpe ratio of 0.151. In contrast, the average return and Sharpe

ratio for the benchmark strategy are 0.085 and 0.115, respectively. Note that with the new trading

strategy, one would sell options less often. The last column of Table A8 indicates the number of

months in which options are shorted.20 We also report skewness of different trading strategies. In

addition to the improvements in the Sharpe ratio, the new strategy that we propose has a similar

or even lower skewness relative to the benchmark strategy. Finally, it should be emphasized that

the Sharpe ratio is a poor performance measure of derivatives trading strategies, which often yield

highly non-normal payoffs (Goetzmann et al., 2004). The strategy proposed in this paper is only

suitable for institutional investors with deep pockets and a long investment horizon.

Table A8 also shows that overall writing OTM put options tends to be more profitable than

writing OTM call options. As our analysis suggests, one potential explanation is that selling OTM

put options earns both the volatility and jump risk premiums. In contrast, by selling OTM call

options, one mainly collects the volatility risk premium. The divergence between selling calls and

puts might also be related to institutional frictions and order flow. For example, it is in general

easy to sell calls via covered calls, but difficult to sell naked puts. Moreover, OTM put options can

be used as portfolio insurance and therefore attract much more demand than OTM calls.

20The number differs for different trading strategies due to missing data. For example, certain options might not
exist in some months.
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Table 1: Average Monthly Returns of S&P 500 Index Options

Panel A: Call Option
K/S 0.96 0.98 1.00 1.02 1.04 1.06 1.08
Ret 6.36 6.89 6.50 1.89 -1.47 -18.12 -25.05

Panel B: Put Option
K/S 0.92 0.94 0.96 0.98 1.00 1.02 1.04
Ret -52.07 -45.02 -37.86 -27.76 -22.36 -15.76 -13.15

Panel C: Option Portfolio
ATMS PSP CNS CSP

Ret -8.47 -18.54 -3.93 13.56

Notes: This table reports the average monthly returns of S&P 500 call and put options with different
moneyness (defined as the strike price over the index: K/S), as well as the average monthly returns
of several option portfolios. For option portfolios, we consider an at-the-money straddle (ATMS)
that consists of a long position in an ATM call and a long position in an ATM put, a put spread
(PSP) that consists of a short position in a 6% OTM put and a long position in an ATM put, a
crash neutral spread (CNS) that consists of a long position in an ATM straddle and a short position
in a 6% OTM put, and a call spread (CSP) that consists of a long position in an ATM call and a
short position in a 6% OTM call. Returns are reported in percent per month. The sample period
is March 1998 to August 2015.
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Table 2: Parameters

BS SV SVJ SV+ SVJ+
µ 0.0506 0.0506 0.0506 0.0506 0.0506
r 0.0201 0.0201 0.0201 0.0201 0.0201
d 0.0174 0.0174 0.0174 0.0174 0.0174
σBSM 0.1905
κ 6.4130 5.9859 6.4130 5.9859

(0.923) (0.909) (0.923) (0.909)
θ 0.0363 0.0358 0.0363 0.0358

(0.004) (0.004) (0.004) (0.004)
σ 0.5472 0.5423 0.5472 0.5423

(0.033) (0.035) (0.033) (0.035)
ρ -0.7944 -0.8015 -0.7944 -0.8015

(0.026) (0.028) (0.026) (0.028)
λ 0.9658 0.9658

(0.114) (0.114)
µz -0.0209 -0.0209

(0.007) (0.007)
σz 0.0677 0.0677

(0.009) (0.009)
η 0.0000 0.0000 -4.3470 0.0000
λQ 0.9658 1.4969
µQ
z -0.0209 -0.0667

Notes: This table reports parameter values that we use to compute expected option returns. We
first consider three option pricing models with only an equity risk premium: the Black-Scholes-
Merton model (BSM), a stochastic volatility model in which volatility risk is not priced (SV), and
a stochastic volatility jump model in which neither volatility nor jump risk is priced (SVJ). To
study the effect of the volatility and jump risk premiums, we further consider a stochastic volatility
model in which volatility risk is priced (SV+) and a stochastic volatility jump model in which jump
risk is priced but volatility risk is not (SVJ+). The equity risk premium (µ), risk-free rate (r),
and dividend yield (d) are calibrated to match those observed in our sample. For the BSM model,
the constant volatility parameter (σBSM) is equal to the square root of the long-run variance (θ)
in the SV model. We use particle filtering to estimate the remaining P-measure parameters and
report standard errors of those estimates in the parentheses. The volatility risk premium (η) and
Q-measure jump parameters (λQ and µQ

z ) are obtained according equations (1) and (2) with a risk
aversion of 10. All parameters are reported in annual terms.
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Table 3: Expected Option Returns with the Equity Risk Premium Only

Panel A: Call Option

Moneyness 0.96 0.98 1.00 1.02 1.04 1.06 1.08

Data 6.36 6.89 6.50 1.89 -1.47 -18.12 -25.05
Ep 7.25 8.67 10.30 12.13 14.12 16.27 18.54

BS Simulation 7.18 8.58 10.19 12.00 14.01 16.18 18.53
p-value (0.45) (0.42) (0.37) (0.23) (0.19) (0.07) (0.08)

Ep 7.51 9.78 13.46 20.06 31.11 43.26 53.63
SV Simulation 7.52 9.81 13.53 20.22 31.64 44.39 52.50

p-value (0.42) (0.35) (0.24) (0.10) (0.11) (0.16) (0.38)
Ep 7.32 9.45 12.80 18.10 22.14 21.35 19.62

SVJ Simulation 7.28 9.41 12.78 18.15 22.36 21.61 19.76
p-value (0.44) (0.37) (0.27) (0.14) (0.20) (0.22) (0.33)

Panel B: Put Option

Moneyness 0.92 0.94 0.96 0.98 1.00 1.02 1.04

Data -52.07 -45.02 -37.86 -27.76 -22.36 -15.76 -13.15
Ep -16.01 -14.07 -12.24 -10.54 -8.99 -7.61 -6.40

BS Simulation -15.92 -13.99 -12.19 -10.49 -8.94 -7.56 -6.35
p-value (0.10) (0.05) (0.04) (0.06) (0.06) (0.12) (0.12)

Ep -11.08 -10.67 -10.20 -9.66 -9.02 -8.20 -7.08
SV Simulation -11.34 -10.76 -10.23 -9.67 -9.02 -8.20 -7.09

p-value (0.13) (0.09) (0.08) (0.11) (0.12) (0.20) (0.19)
Ep -9.65 -9.41 -9.16 -8.85 -8.44 -7.84 -6.88

SVJ Simulation -9.53 -9.29 -9.06 -8.76 -8.37 -7.78 -6.83
p-value (0.09) (0.07) (0.07) (0.10) (0.11) (0.19) (0.19)

Panel C: Option Portfolio

Portfolio ATMS PSP CNS CSP

Data -8.47 -18.54 -3.93 13.56
Ep 0.71 -8.03 1.97 8.88

BS Simulation 0.67 -7.99 1.93 8.77
p-value (0.03) (0.09) (0.11) (0.29)

Ep 2.30 -8.56 3.70 12.11
SV Simulation 2.33 -8.56 3.73 12.16

p-value (0.02) (0.16) (0.05) (0.44)
Ep 2.24 -8.08 3.74 11.59

SVJ Simulation 2.27 -8.02 3.74 11.58
p-value (0.03) (0.14) (0.06) (0.41)

Notes: This table compares realized historical index option returns in Table 1 with expected option returns
implied from models with only an equity risk premium. “Ep” represents expected option returns computed
analytically using parameters from Table 2. We also simulate 25000 sample paths of the index from which
we report the average simulated option returns (denoted by “Simulation”) and p-values. The p-values
are calculated as the percentile of realized option returns relative to the 25000 simulated options returns.
Sample paths are simulated based on the same parameters used for computing expected option returns.
Returns are reported in percent per month. 42



Table 4: The Volatility Risk Premium and Expected Option Returns

Panel A: Call Option
K/S 0.96 0.98 1.00 1.02 1.04 1.06 1.08
Data 6.36 6.89 6.50 1.89 -1.47 -18.12 -25.05
Ep 4.82 5.10 5.14 4.50 1.12 -8.53 -22.54
Simulation 4.90 5.24 5.38 4.94 1.78 -7.99 -21.34
p-value (0.40) (0.40) (0.44) (0.41) (0.48) (0.50) (0.30)

Panel B: Put Option
K/S 0.92 0.94 0.96 0.98 1.00 1.02 1.04
Data -52.07 -45.02 -37.86 -27.76 -22.36 -15.76 -13.15
Ep -30.43 -26.69 -22.96 -19.29 -15.74 -12.39 -9.40
Simulation -30.54 -26.77 -23.03 -19.33 -15.76 -12.42 -9.42
p-value (0.22) (0.19) (0.18) (0.26) (0.26) (0.34) (0.28)

Panel C: Option Portfolio
Portfolio ATMS PSP CNS CSP
Data -8.47 -18.54 -3.93 13.56
Ep -5.24 -12.33 -2.52 6.74
Simulation -5.13 -12.37 -2.41 6.94
p-value (0.24) (0.25) (0.36) (0.20)

Notes: This table compares realized historical index option returns in Table 1 with expected option
returns implied from the SV+ model in which volatility risk is priced. “Ep” represents expected
option returns computed analytically using parameters reported in Table 2. We also simulate 25000
sample paths of the index from which we report the average simulated option returns (denoted
by “Simulation”) and p-values. The p-values are calculated as the percentile of realized option
returns relative to the 25000 simulated options returns. Sample paths are simulated based on the
same parameters used for computing expected option returns. Returns are reported in percent per
month.
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Table 5: The Jump Risk Premium and Expected Option Returns

Panel A: Call Option
K/S 0.96 0.98 1.00 1.02 1.04 1.06 1.08
Data 6.36 6.89 6.50 1.89 -1.47 -18.12 -25.05
Ep 2.96 2.70 2.32 2.34 7.31 29.39 64.09
Simulation 3.01 2.74 2.35 2.39 7.63 29.65 64.05
p-value (0.26) (0.26) (0.30) (0.50) (0.40) (0.25) (0.29)

Panel B: Put Option
K/S 0.92 0.94 0.96 0.98 1.00 1.02 1.04
Data -52.07 -45.02 -37.86 -27.76 -22.36 -15.76 -13.15
Ep -41.93 -35.61 -29.10 -22.71 -16.85 -11.95 -8.38
Simulation -42.22 -35.93 -29.40 -22.98 -17.05 -12.09 -8.46
p-value (0.32) (0.31) (0.29) (0.35) (0.30) (0.33) (0.24)

Panel C: Option Portfolio
Portfolio ATMS PSP CNS CSP
Data -8.47 -18.54 -3.93 13.56
Ep -7.21 -9.30 -2.45 1.46
Simulation -7.30 -9.47 -2.50 1.49
p-value (0.41) (0.16) (0.38) (0.04)

Notes: This table compares realized historical index option returns in Table 1 with expected option
returns implied from the SVJ+ model in which jump risk is priced, but volatility risk is not. “Ep”
represents expected option returns computed analytically using parameters reported in Table 2. We
also simulate 25000 sample paths of the index from which we report the average simulated option
returns (denoted by “Simulation”) and p-values. The p-values are calculated as the percentile of
realized option returns relative to the 25000 simulated options returns. Sample paths are simulated
based on the same parameters used for computing expected option returns. Returns are reported
in percent per month.
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Table 6: The Volatility Risk Premium and Future Option Returns

Panel A: Call Option
0.96 <= K/S < 1.00 1.00 <= K/S < 1.04 1.04 <= K/S < 1.08

Intercept 0.11 0.27 1.28
(1.66) (1.57) (1.50)

VRP -0.06 4.35 24.44
(-0.04) (1.70) (2.11)

Adj. R2 -0.06% 0.37% 0.99%
Panel B: Put Option

0.92 <= K/S < 0.96 0.96 <= K/S < 1.00 1.00 <= K/S < 1.04
Intercept -0.23 -0.12 -0.09

(-1.21) (-0.83) (-0.72)
VRP 8.37 4.38 2.70

(2.21) (1.53) (1.21)
Adj. R2 2.04% 0.64% 0.55%

Panel C: Straddle
0.94 <= K/S < 0.98 0.98 <= K/S < 1.02 1.02 <= K/S < 1.06

Intercept 0.08 0.04 -0.04
(1.91) (0.83) (-0.50)

VRP 1.47 2.63 2.39
(1.84) (2.83) (1.76)

Adj. R2 0.87% 1.59% 1.41%

Notes: This table reports results of the following monthly predictive regression:

option retit, t+1 = αi + βiVRPt + ε, i ∈ {call, put, straddle}

where option ret is monthly holding-to-maturity returns on call options (Panel A), put options
(Panel B), and straddles (Panel C). Each month VRPt is computed as the difference between
realized volatility and the VIX. Realized volatility is constructed based on 5-min log returns on S&P
500 futures over the past 30 calendar days. We run predictive regressions for different moneyness
groups as indicated by different columns. Newey-West t-statistics with 4 lags are reported in the
parentheses. The sample period is March 1998 to August 2015.
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Table 7: Sensitivity Analysis: Stochastic Volatility Parameters

Panel A: Call Option

K/S 0.96 0.98 1 1.02 1.04 1.06 1.08

Baseline 4.82 5.10 5.14 4.50 1.12 -8.53 -22.54
κ+ 4.81 5.08 5.03 4.29 1.07 -6.99 -20.07
κ− 4.97 5.46 5.94 6.12 1.85 -10.64 -26.04
θ+ 4.42 4.49 4.23 3.21 0.03 -7.94 -20.06
θ− 5.27 5.85 6.42 6.67 2.81 -9.64 -25.68
σ+ 4.61 4.85 4.86 4.18 0.01 -11.26 -26.08
σ− 4.96 5.30 5.43 4.99 2.31 -5.89 -18.75
ρ+ 5.00 5.39 5.58 5.15 1.94 -7.13 -20.14
ρ− 4.70 4.91 4.84 4.07 0.50 -10.01 -25.32

Panel B: Put Option

K/S 0.92 0.94 0.96 0.98 1 1.02 1.04

Baseline -30.43 -26.69 -22.96 -19.29 -15.74 -12.39 -9.40
κ+ -30.18 -26.43 -22.69 -19.03 -15.51 -12.22 -9.31
κ− -31.00 -27.26 -23.52 -19.81 -16.19 -12.72 -9.53
θ+ -29.56 -25.88 -22.25 -18.70 -15.29 -12.11 -9.29
θ− -31.42 -27.61 -23.79 -20.01 -16.30 -12.76 -9.52
σ+ -30.88 -27.13 -23.39 -19.69 -16.09 -12.67 -9.56
σ− -29.85 -26.13 -22.44 -18.83 -15.36 -12.11 -9.23
ρ+ -30.21 -26.50 -22.80 -19.16 -15.64 -12.31 -9.33
ρ− -30.77 -26.98 -23.21 -19.50 -15.90 -12.52 -9.48

Panel C: Option Portfolio

ATMS PSP CNS CSP

Baseline -5.24 -12.33 -2.52 6.74
κ+ -5.28 -12.12 -2.57 6.57
κ− -5.05 -12.87 -2.39 7.55
θ+ -5.48 -11.68 -2.66 6.06
θ− -4.87 -13.13 -2.27 7.80
σ+ -5.55 -12.50 -2.74 6.65
σ− -4.90 -12.10 -2.27 6.90
ρ+ -4.96 -12.37 -2.32 7.08
ρ− -5.47 -12.38 -2.69 6.50

Notes: This table reports expected option returns for the SV+ model by increasing (+) and decreasing
(–) each stochastic volatility parameter by one standard deviation. Expected option returns based on our
baseline parameterization are also included for comparison. Returns are in percent per month.
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Table 8: Sensitivity Analysis: Risk Aversion

Panel A: Call Option

γ\K/S 0.96 0.98 1.00 1.02 1.04 1.06 1.08

0 7.51 9.78 13.46 20.06 31.11 43.26 53.63
2 6.99 8.86 11.76 16.66 24.06 30.17 32.46
4 6.55 8.08 10.36 14.03 18.66 19.58 15.45
6 5.98 7.09 8.60 10.75 12.36 8.94 0.35
8 5.49 6.24 7.11 8.00 7.06 -0.14 -12.30
10 4.82 5.10 5.14 4.50 1.12 -8.53 -22.54
12 4.25 4.15 3.54 1.75 -3.73 -15.87 -31.44
14 3.80 3.38 2.18 -0.72 -8.24 -22.77 -39.74
16 3.01 2.14 0.22 -3.85 -12.88 -28.33 -45.40
18 2.40 1.15 -1.40 -6.53 -17.08 -33.73 -51.12
20 1.87 0.25 -2.90 -9.04 -21.06 -38.81 -56.33

Panel B: Put Option

γ\K/S 0.92 0.94 0.96 0.98 1.00 1.02 1.04

0 -11.08 -10.67 -10.20 -9.66 -9.02 -8.20 -7.08
2 -15.34 -14.12 -12.88 -11.63 -10.35 -9.00 -7.52
4 -19.58 -17.61 -15.66 -13.73 -11.83 -9.93 -8.02
6 -23.37 -20.74 -18.15 -15.60 -13.12 -10.72 -8.45
8 -27.16 -23.93 -20.73 -17.58 -14.52 -11.62 -8.94
10 -30.43 -26.69 -22.96 -19.29 -15.74 -12.39 -9.40
12 -33.77 -29.55 -25.32 -21.14 -17.09 -13.28 -9.90
14 -37.16 -32.49 -27.78 -23.09 -18.51 -14.20 -10.42
16 -39.85 -34.85 -29.77 -24.69 -19.73 -15.05 -10.97
18 -42.71 -37.39 -31.94 -26.45 -21.05 -15.96 -11.52
20 -45.56 -39.94 -34.14 -28.24 -22.41 -16.88 -12.06

Panel C: Option Portfolio

γ\ Portfolio ATMS PSP CNS CSP

0 2.30 -8.56 3.70 12.11
2 0.78 -9.30 2.45 10.97
4 -0.66 -10.22 1.25 10.14
6 -2.19 -10.91 0.00 8.97
8 -3.64 -11.76 -1.21 8.05
10 -5.24 -12.33 -2.52 6.74
12 -6.71 -13.09 -3.74 5.78
14 -8.10 -14.01 -4.92 4.96
16 -9.70 -14.53 -6.22 3.80
18 -11.17 -15.27 -7.46 2.84
20 -12.60 -16.10 -8.66 1.95

Notes: This table reports expected option returns for the SV+ model using different values of risk aversion
(γ) ranging from 0 to 20. The remaining parameters are based on Table 2. Returns are in percent per
month.
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Table 9: Robustness: Alternative Measures of the Volatility Risk Premium

Panel A: Call Option
0.96 <= K/S < 1.00 1.00 <= K/S < 1.04 1.04 <= K/S < 1.08

Intercept 0.10 0.22 1.04
(1.67) (1.40) (1.39)

VRP -0.37 3.32 20.56
(-0.31) (1.41) (2.05)

Adj. R2 -0.04% 0.20% 0.73%
Panel B: Put Option

0.92 <= K/S < 0.96 0.96 <= K/S < 1.00 1.00 <= K/S < 1.04
Intercept -0.28 -0.15 -0.11

(-1.65) (-1.13) (-0.98)
VRP 8.03 4.14 2.50

(2.27) (1.49) (1.15)
Adj. R2 1.98% 0.60% 0.49%

Panel C: Straddle
0.94 <= K/S < 0.98 0.98 <= K/S < 1.02 1.02 <= K/S < 1.06

Intercept 0.07 0.02 -0.07
(1.68) (0.38) (-0.89)

VRP 1.16 2.27 2.02
(1.52) (2.48) (1.52)

Adj. R2 0.56% 1.24% 1.01%

Notes: This table reports results of the following monthly predictive regression:

option retit, t+1 = αi + βiVRPt + ε, i ∈ {call, put, straddle}

where option ret is monthly holding-to-maturity returns on call options (Panel A), put options
(Panel B), and straddles (Panel C). Each month VRPt is computed as the difference between
expected future realized volatility and the VIX. Expected future realized volatility is estimated
using the Heterogeneous Autoregressive Model (the HAR model) of Corsi (2009). We run predictive
regressions for different moneyness groups as indicated by different columns. Newey-West t-statistics
with 4 lags are reported in the parentheses. The sample period is March 1998 to August 2015.
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Figure 1: Moneyness and Expected Option Returns

Panel A: Expected Call Option Returns
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Panel B: Expected Put Option Returns
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Notes: This figure plots expected option returns as a function of the strike price for three option
pricing models with only an equity risk premium (BSM, SV, and SVJ), the SV+ model in which
volatility risk is priced, and the SVJ+ model in which jump risk is priced, but volatility risk is not.
Panel A is for call options and Panel B for put options. Expected option returns are computed
analytically based on parameters reported in Table 2. The realized average option returns are also
included (Data). 50



Figure 2: The Volatility Risk Premium and Expected Option Returns
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Panel B: Expected Put Option Returns
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Panel C: Expected Straddle Returns
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Notes: This figure plots expected option returns against risk aversion coefficient (γ) in the SV+
model: Panel A for calls, Panel B for puts, and Panel C for straddles. A higher γ corresponds to a
more negative volatility risk premium. The remaining parameters required for computing expected
returns are based on Table 2. 51



Online Appendix

Table A1: Summary Statistics: S&P 500 Index Options

Panel A: Call Option
K/S [0.90-0.94] (0.94-0.98] (0.98-1.02] (1.02-1.06] (1.06-1.10]
Implied volatility 0.270 0.222 0.190 0.167 0.168
Volume 257 313 2363 3072 2185
Open interest 10444 13511 18349 17667 15797
Delta 0.878 0.764 0.505 0.189 0.057
Theta -132 -163 -174 -105 -45
Gamma 0.002 0.004 0.007 0.005 0.002
Vega 63 103 134 82 32

Panel B: Put Option
K/S [0.90-0.94] (0.94-0.98] (0.98-1.02] (1.02-1.06] (1.06-1.10]
Implied volatility 0.261 0.223 0.190 0.175 0.220
Volume 3928 3016 2899 422 381
Open interest 22351 22259 16610 9569 12190
Delta -0.106 -0.225 -0.484 -0.768 -0.886
Theta -112 -153 -165 -116 -94
Gamma 0.002 0.004 0.007 0.005 0.003
Vega 59 100 134 98 53

Notes: This table reports summary statistics of S&P 500 index options. Panel A and Panel B
report, by moneyness, averages of implied volatility, volume, open interest as well as option Greeks
for S&P 500 call and put options, respectively. The statistics are first averaged across options in
each moneyness group and then averaged across time. Volatilities are stated in annual terms. The
sample period is March 1998 to August 2015.
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Table A2: The Jump Risk Premium and Future Option Returns

Panel A: Call Option
0.96 <= K/S < 1.00 1.00 <= K/S < 1.04 1.04 <= K/S < 1.08

Intercept -0.06 0.23 -0.38
(-0.29) (0.68) (-0.76)

JUMP 2.19 -1.96 9.55
(0.75) (-0.45) (0.93)

Adj. R2 0.04% -0.04% -0.05%
Panel B: Put Option

0.92 <= K/S < 0.96 0.96 <= K/S < 1.00 1.00 <= K/S < 1.04
Intercept 0.90 0.61 0.14

(1.64) (1.17) (0.41)
JUMP -19.26 -11.76 -4.53

(-2.94) (-1.77) (-0.99)
Adj. R2 1.45% 0.62% 0.16%

Panel C: Straddle
0.94 <= K/S < 0.98 0.98 <= K/S < 1.02 1.02 <= K/S < 1.06

Intercept -0.06 0.05 0.04
(-0.40) (0.27) (0.16)

VRP 1.14 -1.42 -2.77
(0.60) (-0.58) (-0.81)

Adj. R2 -0.01% 0.01% 0.09%

Notes: This table reports results of the following monthly predictive regression:

option retit, t+1 = αi + βiJUMPt + ε, i ∈ {call, put, straddle}

where option ret is monthly holding-to-maturity returns on call options (Panel A), put options
(Panel B), and straddles (Panel C). Each month JUMPt is computed as the difference between
the average implied volatility from OTM put options and that from ATM put options. We run
predictive regressions for different moneyness groups as indicated by different columns. Newey-
West t-statistics with 4 lags are reported in the parentheses. The sample period is March 1998 to
August 2015.
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Table A3: Variance-Dependent Pricing Kernel and Expected Option Returns

Panel A: Call Option

γ\K/S 0.96 0.98 1 1.02 1.04 1.06 1.08

0 5.69 6.59 7.72 9.12 9.45 4.58 -5.38
2 5.11 5.60 6.01 6.08 3.95 -4.12 -16.75
4 4.57 4.68 4.42 3.23 -1.09 -11.84 -26.63
6 4.11 3.90 3.04 0.76 -5.68 -19.05 -35.54
8 3.47 2.84 1.30 -2.18 -10.39 -25.32 -42.44
10 2.95 1.98 -0.16 -4.71 -14.71 -31.32 -49.06
12 2.34 0.98 -1.79 -7.38 -18.86 -36.51 -54.26
14 1.49 -0.31 -3.75 -10.28 -22.70 -40.52 -57.83
16 0.85 -1.32 -5.35 -12.81 -26.36 -44.80 -61.92
18 0.29 -2.23 -6.83 -15.20 -29.89 -48.90 -65.78
20 -0.50 -3.42 -8.59 -17.73 -33.06 -52.10 -68.51

Panel B: Put Option

γ\K/S 0.92 0.94 0.96 0.98 1 1.02 1.04

0 -24.90 -22.01 -19.16 -16.36 -13.64 -11.05 -8.64
2 -28.44 -24.99 -21.57 -18.21 -14.96 -11.89 -9.11
4 -31.91 -27.95 -24.00 -20.10 -16.33 -12.78 -9.62
6 -35.38 -30.95 -26.49 -22.06 -17.76 -13.70 -10.13
8 -38.38 -33.56 -28.68 -23.80 -19.05 -14.57 -10.65
10 -41.45 -36.27 -30.97 -25.65 -20.42 -15.48 -11.17
12 -44.24 -38.75 -33.10 -27.38 -21.73 -16.37 -11.72
14 -46.56 -40.85 -34.94 -28.92 -22.95 -17.28 -12.34
16 -49.10 -43.16 -36.96 -30.60 -24.26 -18.21 -12.93
18 -51.64 -45.50 -39.02 -32.33 -25.59 -19.13 -13.50
20 -53.76 -47.48 -40.81 -33.87 -26.86 -20.09 -14.16

Panel C: Option Portfolio

γ\ Portfolio ATMS PSP CNS CSP

0 -2.90 -11.15 -0.58 8.36
2 -4.41 -11.87 -1.83 7.27
4 -5.89 -12.66 -3.06 6.29
6 -7.29 -13.57 -4.25 5.47
8 -8.81 -14.24 -5.50 4.40
10 -10.23 -15.09 -6.70 3.52
12 -11.70 -15.82 -7.93 2.56
14 -13.29 -16.32 -9.23 1.51
16 -14.75 -17.05 -10.46 0.59
18 -16.16 -17.88 -11.65 -0.28
20 -17.68 -18.48 -12.92 -1.21

Notes: This table reports expected option returns using different values of risk aversion (γ) ranging from
0 to 20. The volatility risk premium is computed based on the variance-dependent pricing kernel of
Christoffersen, Heston, and Jacobs (2013). The remaining parameters are based on Table 2. Returns are
in percent per month. 54



Table A4: Sensitivity Analysis: Jump Parameters

Panel A: Call Option

K/S 0.96 0.98 1 1.02 1.04 1.06 1.08

Baseline 2.96 2.70 2.32 2.34 7.31 29.39 64.09
λ+ 2.50 2.01 1.29 0.78 4.60 24.34 57.93
λ− 3.45 3.44 3.45 4.06 9.83 31.84 66.93
µz+ 3.71 3.84 4.12 5.45 13.83 40.22 77.91
µz− 2.12 1.43 0.36 -0.87 1.38 20.10 52.98
σz+ 1.08 0.05 -1.40 -2.81 1.84 28.69 70.76
σz− 4.42 4.79 5.33 6.67 12.73 32.07 61.89

Panel B: Put Option

K/S 0.92 0.94 0.96 0.98 1 1.02 1.04

Baseline -41.93 -35.61 -29.10 -22.71 -16.85 -11.95 -8.38
λ+ -42.73 -36.39 -29.84 -23.36 -17.37 -12.29 -8.53
λ− -40.67 -34.36 -27.94 -21.75 -16.16 -11.57 -8.24
µz+ -39.63 -33.44 -27.17 -21.11 -15.66 -11.19 -7.97
µz− -44.87 -38.40 -31.62 -24.81 -18.40 -12.92 -8.86
σz+ -49.35 -42.36 -34.88 -27.21 -19.88 -13.55 -8.96
σz− -35.36 -30.02 -24.63 -19.46 -14.78 -10.91 -8.01

Panel C: Option Portfolio

ATMS PSP CNS CSP

Baseline -7.21 -9.30 -2.45 1.46
λ+ -7.99 -9.30 -3.02 0.55
λ− -6.30 -9.21 -1.79 2.51
µz+ -5.72 -9.08 -1.37 2.70
µz− -8.97 -9.67 -3.70 0.03
σz+ -10.59 -9.01 -4.43 -2.21
σz− -4.67 -9.66 -0.99 4.41

Notes: This table reports expected option returns for the SVJ+ model by increasing (+) and decreasing
(–) each P-measure jump parameter by one standard deviation. Expected option returns based on our
baseline parameterization are also included for comparison. Returns are in percent per month.
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Table A5: Sensitivity Analysis: Jump Risk Premium

Panel A: Call Option

γ\K/S 0.96 0.98 1 1.02 1.04 1.06 1.08

0 7.32 9.45 12.80 18.10 22.14 21.35 19.62
2 6.90 8.82 11.89 17.12 23.64 27.79 31.35
4 6.29 7.85 10.39 15.04 22.94 32.59 43.22
6 5.47 6.56 8.33 11.82 20.06 35.25 54.13
8 4.37 4.85 5.65 7.56 14.77 34.00 60.78
10 2.96 2.70 2.32 2.34 7.31 29.39 64.09
12 1.14 -0.03 -1.77 -3.92 -2.31 18.92 60.66
14 -1.32 -3.68 -7.18 -11.93 -13.73 6.81 53.06
16 -4.34 -7.97 -13.22 -20.32 -26.33 -14.43 31.02
18 -8.12 -13.20 -20.29 -29.61 -38.64 -35.29 1.54
20 -12.88 -19.58 -28.58 -39.84 -50.99 -55.13 -34.67

Panel B: Put Option

γ\K/S 0.92 0.94 0.96 0.98 1 1.02 1.04

0 -9.65 -9.41 -9.16 -8.85 -8.44 -7.84 -6.88
2 -15.30 -13.59 -12.03 -10.65 -9.41 -8.25 -7.00
4 -21.59 -18.44 -15.51 -12.89 -10.66 -8.79 -7.15
6 -28.30 -23.84 -19.56 -15.65 -12.28 -9.55 -7.42
8 -34.79 -29.33 -23.90 -18.76 -14.22 -10.51 -7.76
10 -41.93 -35.61 -29.10 -22.71 -16.85 -11.95 -8.38
12 -48.66 -41.82 -34.53 -27.10 -19.99 -13.81 -9.22
14 -57.34 -50.10 -42.06 -33.45 -24.74 -16.75 -10.61
16 -63.55 -56.38 -48.17 -39.06 -29.42 -20.08 -12.46
18 -69.35 -62.56 -54.55 -45.30 -35.03 -24.43 -15.11
20 -75.42 -69.16 -61.55 -52.43 -41.82 -30.19 -19.08

Panel C: Option Portfolio

γ\ Portfolio ATMS PSP CNS CSP

0 2.24 -8.08 3.74 11.59
2 1.30 -8.21 3.20 10.46
4 -0.07 -8.37 2.34 8.84
6 -1.91 -8.59 1.15 6.82
8 -4.23 -8.82 -0.40 4.36
10 -7.21 -9.30 -2.45 1.46
12 -10.83 -9.88 -5.02 -1.96
14 -15.92 -11.24 -8.77 -6.48
16 -21.28 -12.53 -12.95 -11.12
18 -27.63 -14.62 -18.23 -16.31
20 -35.17 -17.89 -24.87 -22.01

Notes: This table reports expected option returns for the SVJ+ model using different values of risk aversion
(γ) ranging from 0 to 20. The remaining parameters are based on Table 2. Returns are in percent per
month.
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Table A7: Robustness: Holding-Period Option Returns

Panel A: Call Option
0.96 <= K/S < 1.00 1.00 <= K/S < 1.04 1.04 <= K/S < 1.08

Intercept 0.04 0.11 0.39
(0.94) (1.28) (1.57)

VRP 0.69 2.86 7.85
(1.01) (2.26) (2.41)

Adj. R2 0.10% 0.51% 0.80%
Panel B: Put Option

0.92 <= K/S < 0.96 0.96 <= K/S < 1.00 1.00 <= K/S < 1.04
Intercept -0.21 -0.11 -0.06

(-2.80) (-1.84) (-1.19)
VRP 3.33 2.05 1.18

(2.33) (1.91) (1.31)
Adj. R2 0.83% 0.36% 0.23%

Panel C: Straddle
0.94 <= K/S < 0.98 0.98 <= K/S < 1.02 1.02 <= K/S < 1.06

Intercept 0.00 -0.01 -0.02
(0.08) (-0.21) (-0.45)

VRP 0.80 1.38 1.40
(1.77) (2.76) (1.73)

Adj. R2 0.69% 1.63% 1.49%

Notes: This table reports results of the following monthly predictive regression:

option retit, t+15 = αi + βiVRPt + ε, i ∈ {call, put, straddle}

where option ret is 15-day holding period returns on call options (Panel A), put options (Panel
B), and straddles (Panel C). When option liquidation dates land on a holiday (e.g., the New Year
and the Fourth of July), we use the option price information the day before and we assume options
trade at the mid-point of bid-ask quotes. Each month VRPt is computed as the difference between
realized volatility and the VIX. Realized volatility is constructed based on 5-min log returns on
S&P 500 futures over past 30 calendar days. We run predictive regressions for different moneyness
groups as indicated by different columns. Newey-West t-statistics with 4 lags are reported in the
parentheses. The sample period is March 1998 to August 2015.
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Table A8: Descriptive Statistics of Option Trading Strategies

Panel A: Index
Mean STD SR SKEW Holding-Period

S&P 500 0.004 0.045 0.082 -0.639 210
Panel B: 4% OTM Call

Mean STD SR SKEW Holding-Period
Always -0.015 3.672 -0.004 6.803 209
VRP< 0 -0.157 3.272 -0.048 8.146 187

Panel C: 6% OTM Call
Mean STD SR SKEW Holding-Period

Always -0.181 6.179 -0.029 12.695 206
VRP< 0 -0.581 1.873 -0.310 5.605 184

Panel D: 4% OTM Put
Mean STD SR SKEW Holding-Period

Always -0.379 2.164 -0.175 4.250 207
VRP< 0 -0.470 1.973 -0.238 4.792 185

Panel E: 6% OTM Put
Mean STD SR SKEW Holding-Period

Always -0.450 2.468 -0.182 5.219 206
VRP< 0 -0.575 2.216 -0.259 6.221 185

Panel F: ATM Straddle
Mean STD SR SKEW Holding-Period

Always -0.085 0.739 -0.115 1.430 209
VRP< 0 -0.106 0.704 -0.151 1.462 188

Notes: This table reports mean (Mean), standard deviation (STD), Sharpe ratio (SR) and skewness
(SKEW) of returns of several trading strategies. Panel A reports on the S&P 500. Panels B to F
report the performance of writing a 4% OTM call, a 6% OTM call, a 4% OTM put, a 6% OTM
put, and an ATM straddle. We consider two option selling strategies: “Always” and “VRP < 0”.
“Always” shorts index options in every month. “VRP < 0” shorts index options only in months
when the observed market volatility risk premium is negative. We report returns to the long side.
The sample period is March 1998 to August 2015.
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Figure A1: Realized Volatility, the VIX, and the Volatility Risk Premium

Panel A: Realized Volatility and the VIX
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Notes: This figure plots the time series of monthly realized volatility (RV), the VIX (Panel A), and
their difference which is the volatility risk premium (Panel B). The sample period is March 1998 to
August 2015.
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